This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that characterize a division ring among rings: it should be nonzero, have no nonzero zero-divisors, and every nonzero element x should have a right-inverse I ( x ) . See isdrngd for the characterization using left-inverses. (Contributed by NM, 10-Aug-2013) Remove hypothesis. (Revised by SN, 19-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdrngd.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) | |
| isdrngd.t | ⊢ ( 𝜑 → · = ( .r ‘ 𝑅 ) ) | ||
| isdrngd.z | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝑅 ) ) | ||
| isdrngd.u | ⊢ ( 𝜑 → 1 = ( 1r ‘ 𝑅 ) ) | ||
| isdrngd.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| isdrngd.n | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) ≠ 0 ) | ||
| isdrngd.o | ⊢ ( 𝜑 → 1 ≠ 0 ) | ||
| isdrngd.i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → 𝐼 ∈ 𝐵 ) | ||
| isdrngrd.k | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → ( 𝑥 · 𝐼 ) = 1 ) | ||
| Assertion | isdrngrd | ⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdrngd.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) | |
| 2 | isdrngd.t | ⊢ ( 𝜑 → · = ( .r ‘ 𝑅 ) ) | |
| 3 | isdrngd.z | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝑅 ) ) | |
| 4 | isdrngd.u | ⊢ ( 𝜑 → 1 = ( 1r ‘ 𝑅 ) ) | |
| 5 | isdrngd.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 6 | isdrngd.n | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) ≠ 0 ) | |
| 7 | isdrngd.o | ⊢ ( 𝜑 → 1 ≠ 0 ) | |
| 8 | isdrngd.i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → 𝐼 ∈ 𝐵 ) | |
| 9 | isdrngrd.k | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → ( 𝑥 · 𝐼 ) = 1 ) | |
| 10 | eqid | ⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 12 | 10 11 | opprbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
| 13 | 1 12 | eqtrdi | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( oppr ‘ 𝑅 ) ) ) |
| 14 | eqidd | ⊢ ( 𝜑 → ( .r ‘ ( oppr ‘ 𝑅 ) ) = ( .r ‘ ( oppr ‘ 𝑅 ) ) ) | |
| 15 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 16 | 10 15 | oppr0 | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ ( oppr ‘ 𝑅 ) ) |
| 17 | 3 16 | eqtrdi | ⊢ ( 𝜑 → 0 = ( 0g ‘ ( oppr ‘ 𝑅 ) ) ) |
| 18 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 19 | 10 18 | oppr1 | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ ( oppr ‘ 𝑅 ) ) |
| 20 | 4 19 | eqtrdi | ⊢ ( 𝜑 → 1 = ( 1r ‘ ( oppr ‘ 𝑅 ) ) ) |
| 21 | 10 | opprring | ⊢ ( 𝑅 ∈ Ring → ( oppr ‘ 𝑅 ) ∈ Ring ) |
| 22 | 5 21 | syl | ⊢ ( 𝜑 → ( oppr ‘ 𝑅 ) ∈ Ring ) |
| 23 | eleq1w | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵 ) ) | |
| 24 | neeq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ≠ 0 ↔ 𝑥 ≠ 0 ) ) | |
| 25 | 23 24 | anbi12d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) ) |
| 26 | 25 | 3anbi2d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) ↔ ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) ) ) |
| 27 | oveq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑧 ) = ( 𝑥 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑧 ) ) | |
| 28 | 27 | neeq1d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑧 ) ≠ 0 ↔ ( 𝑥 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑧 ) ≠ 0 ) ) |
| 29 | 26 28 | imbi12d | ⊢ ( 𝑦 = 𝑥 → ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑧 ) ≠ 0 ) ↔ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝑥 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑧 ) ≠ 0 ) ) ) |
| 30 | eleq1w | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵 ) ) | |
| 31 | neeq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≠ 0 ↔ 𝑧 ≠ 0 ) ) | |
| 32 | 30 31 | anbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ↔ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) ) |
| 33 | 32 | 3anbi3d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) ↔ ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) ) ) |
| 34 | oveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑧 ) ) | |
| 35 | 34 | neeq1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) ≠ 0 ↔ ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑧 ) ≠ 0 ) ) |
| 36 | 33 35 | imbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) ≠ 0 ) ↔ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑧 ) ≠ 0 ) ) ) |
| 37 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) → · = ( .r ‘ 𝑅 ) ) |
| 38 | 37 | oveqd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 39 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 40 | eqid | ⊢ ( .r ‘ ( oppr ‘ 𝑅 ) ) = ( .r ‘ ( oppr ‘ 𝑅 ) ) | |
| 41 | 11 39 10 40 | opprmul | ⊢ ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) |
| 42 | 38 41 | eqtr4di | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) = ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) ) |
| 43 | 42 6 | eqnetrrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) → ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) ≠ 0 ) |
| 44 | 43 | 3com23 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) ≠ 0 ) |
| 45 | 36 44 | chvarvv | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑧 ) ≠ 0 ) |
| 46 | 29 45 | chvarvv | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝑥 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑧 ) ≠ 0 ) |
| 47 | 11 39 10 40 | opprmul | ⊢ ( 𝐼 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝐼 ) |
| 48 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → · = ( .r ‘ 𝑅 ) ) |
| 49 | 48 | oveqd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → ( 𝑥 · 𝐼 ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝐼 ) ) |
| 50 | 49 9 | eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝐼 ) = 1 ) |
| 51 | 47 50 | eqtrid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → ( 𝐼 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = 1 ) |
| 52 | 13 14 17 20 22 46 7 8 51 | isdrngd | ⊢ ( 𝜑 → ( oppr ‘ 𝑅 ) ∈ DivRing ) |
| 53 | 10 | opprdrng | ⊢ ( 𝑅 ∈ DivRing ↔ ( oppr ‘ 𝑅 ) ∈ DivRing ) |
| 54 | 52 53 | sylibr | ⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |