This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the property " F is a Cauchy sequence of metric D " using an arbitrary upper set of integers. (Contributed by NM, 19-Dec-2006) (Revised by Mario Carneiro, 14-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iscau2 | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscau | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) | |
| 2 | elfvdm | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met ) | |
| 3 | cnex | ⊢ ℂ ∈ V | |
| 4 | elpmg | ⊢ ( ( 𝑋 ∈ dom ∞Met ∧ ℂ ∈ V ) → ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ↔ ( Fun 𝐹 ∧ 𝐹 ⊆ ( ℂ × 𝑋 ) ) ) ) | |
| 5 | 2 3 4 | sylancl | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ↔ ( Fun 𝐹 ∧ 𝐹 ⊆ ( ℂ × 𝑋 ) ) ) ) |
| 6 | 5 | simprbda | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → Fun 𝐹 ) |
| 7 | ffvresb | ⊢ ( Fun 𝐹 → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) |
| 9 | 8 | rexbidv | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → ( ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) |
| 10 | 9 | adantr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) |
| 11 | uzid | ⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) | |
| 12 | 11 | adantl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 13 | eleq1w | ⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ dom 𝐹 ↔ 𝑗 ∈ dom 𝐹 ) ) | |
| 14 | fveq2 | ⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) | |
| 15 | 14 | eleq1d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ( 𝐹 ‘ 𝑗 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
| 16 | 13 15 | anbi12d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑗 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) |
| 17 | 16 | rspcv | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) → ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑗 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) |
| 18 | 12 17 | syl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) → ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑗 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) |
| 19 | n0i | ⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) → ¬ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) = ∅ ) | |
| 20 | blf | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ball ‘ 𝐷 ) : ( 𝑋 × ℝ* ) ⟶ 𝒫 𝑋 ) | |
| 21 | 20 | fdmd | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → dom ( ball ‘ 𝐷 ) = ( 𝑋 × ℝ* ) ) |
| 22 | ndmovg | ⊢ ( ( dom ( ball ‘ 𝐷 ) = ( 𝑋 × ℝ* ) ∧ ¬ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ* ) ) → ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) = ∅ ) | |
| 23 | 22 | ex | ⊢ ( dom ( ball ‘ 𝐷 ) = ( 𝑋 × ℝ* ) → ( ¬ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ* ) → ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) = ∅ ) ) |
| 24 | 21 23 | syl | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ¬ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ* ) → ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) = ∅ ) ) |
| 25 | 24 | con1d | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ¬ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) = ∅ → ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ* ) ) ) |
| 26 | simpl | ⊢ ( ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ* ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) | |
| 27 | 19 25 26 | syl56 | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( 𝐹 ‘ 𝑗 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) ) |
| 28 | 27 | adantld | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑗 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) ) |
| 29 | 28 | ad2antrr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) → ( ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑗 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) ) |
| 30 | 18 29 | syld | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) ) |
| 31 | 14 | eleq1d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ↔ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) ) |
| 32 | 14 | oveq1d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) = ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) |
| 33 | 32 | breq1d | ⊢ ( 𝑘 = 𝑗 → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ↔ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) |
| 34 | 13 31 33 | 3anbi123d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ↔ ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) |
| 35 | 34 | rspcv | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) → ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) |
| 36 | 12 35 | syl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) → ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) |
| 37 | simp2 | ⊢ ( ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) | |
| 38 | 36 37 | syl6 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) ) |
| 39 | rpxr | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ* ) | |
| 40 | elbl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ* ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) ) | |
| 41 | 39 40 | syl3an3 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) ) |
| 42 | xmetsym | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) | |
| 43 | 42 | 3expa | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) |
| 44 | 43 | 3adantl3 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) |
| 45 | 44 | breq1d | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) → ( ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) |
| 46 | 45 | pm5.32da | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ+ ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) |
| 47 | 41 46 | bitrd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) |
| 48 | 47 | 3com23 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) |
| 49 | 48 | anbi2d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) ) |
| 50 | 3anass | ⊢ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) | |
| 51 | 49 50 | bitr4di | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) |
| 52 | 51 | ralbidv | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) |
| 53 | 52 | 3expia | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) ) |
| 54 | 53 | adantr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) → ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) ) |
| 55 | 30 38 54 | pm5.21ndd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) |
| 56 | 55 | rexbidva | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) |
| 57 | 56 | adantlr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) |
| 58 | 10 57 | bitrd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) |
| 59 | 58 | ralbidva | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) |
| 60 | 59 | pm5.32da | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) ) |
| 61 | 1 60 | bitrd | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) ) |