This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping of a ball. (Contributed by NM, 7-May-2007) (Revised by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | blf | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ball ‘ 𝐷 ) : ( 𝑋 × ℝ* ) ⟶ 𝒫 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 | ⊢ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ⊆ 𝑋 | |
| 2 | elfvdm | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met ) | |
| 3 | elpw2g | ⊢ ( 𝑋 ∈ dom ∞Met → ( { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ∈ 𝒫 𝑋 ↔ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ⊆ 𝑋 ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ∈ 𝒫 𝑋 ↔ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ⊆ 𝑋 ) ) |
| 5 | 1 4 | mpbiri | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ∈ 𝒫 𝑋 ) |
| 6 | 5 | a1d | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) → { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ∈ 𝒫 𝑋 ) ) |
| 7 | 6 | ralrimivv | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑟 ∈ ℝ* { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ∈ 𝒫 𝑋 ) |
| 8 | eqid | ⊢ ( 𝑥 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) = ( 𝑥 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) | |
| 9 | 8 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑟 ∈ ℝ* { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ∈ 𝒫 𝑋 ↔ ( 𝑥 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) : ( 𝑋 × ℝ* ) ⟶ 𝒫 𝑋 ) |
| 10 | 7 9 | sylib | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) : ( 𝑋 × ℝ* ) ⟶ 𝒫 𝑋 ) |
| 11 | blfval | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ball ‘ 𝐷 ) = ( 𝑥 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) ) | |
| 12 | 11 | feq1d | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( ball ‘ 𝐷 ) : ( 𝑋 × ℝ* ) ⟶ 𝒫 𝑋 ↔ ( 𝑥 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) : ( 𝑋 × ℝ* ) ⟶ 𝒫 𝑋 ) ) |
| 13 | 10 12 | mpbird | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ball ‘ 𝐷 ) : ( 𝑋 × ℝ* ) ⟶ 𝒫 𝑋 ) |