This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of an operation outside its domain. (Contributed by NM, 28-Mar-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ndmovg | ⊢ ( ( dom 𝐹 = ( 𝑅 × 𝑆 ) ∧ ¬ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝐴 𝐹 𝐵 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov | ⊢ ( 𝐴 𝐹 𝐵 ) = ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 2 | eleq2 | ⊢ ( dom 𝐹 = ( 𝑅 × 𝑆 ) → ( 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ↔ 〈 𝐴 , 𝐵 〉 ∈ ( 𝑅 × 𝑆 ) ) ) | |
| 3 | opelxp | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑅 × 𝑆 ) ↔ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) | |
| 4 | 2 3 | bitrdi | ⊢ ( dom 𝐹 = ( 𝑅 × 𝑆 ) → ( 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ↔ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) ) |
| 5 | 4 | notbid | ⊢ ( dom 𝐹 = ( 𝑅 × 𝑆 ) → ( ¬ 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ↔ ¬ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) ) |
| 6 | ndmfv | ⊢ ( ¬ 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 → ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) = ∅ ) | |
| 7 | 5 6 | biimtrrdi | ⊢ ( dom 𝐹 = ( 𝑅 × 𝑆 ) → ( ¬ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) = ∅ ) ) |
| 8 | 7 | imp | ⊢ ( ( dom 𝐹 = ( 𝑅 × 𝑆 ) ∧ ¬ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) = ∅ ) |
| 9 | 1 8 | eqtrid | ⊢ ( ( dom 𝐹 = ( 𝑅 × 𝑆 ) ∧ ¬ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝐴 𝐹 𝐵 ) = ∅ ) |