This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a partial function". (Contributed by Mario Carneiro, 14-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elpmg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐶 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( Fun 𝐶 ∧ 𝐶 ⊆ ( 𝐵 × 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmvalg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ↑pm 𝐵 ) = { 𝑔 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑔 } ) | |
| 2 | 1 | eleq2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐶 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ 𝐶 ∈ { 𝑔 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑔 } ) ) |
| 3 | funeq | ⊢ ( 𝑔 = 𝐶 → ( Fun 𝑔 ↔ Fun 𝐶 ) ) | |
| 4 | 3 | elrab | ⊢ ( 𝐶 ∈ { 𝑔 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑔 } ↔ ( 𝐶 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∧ Fun 𝐶 ) ) |
| 5 | 2 4 | bitrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐶 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( 𝐶 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∧ Fun 𝐶 ) ) ) |
| 6 | 5 | biancomd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐶 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( Fun 𝐶 ∧ 𝐶 ∈ 𝒫 ( 𝐵 × 𝐴 ) ) ) ) |
| 7 | elex | ⊢ ( 𝐶 ∈ 𝒫 ( 𝐵 × 𝐴 ) → 𝐶 ∈ V ) | |
| 8 | 7 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐶 ∈ 𝒫 ( 𝐵 × 𝐴 ) → 𝐶 ∈ V ) ) |
| 9 | xpexg | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐵 × 𝐴 ) ∈ V ) | |
| 10 | 9 | ancoms | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 × 𝐴 ) ∈ V ) |
| 11 | ssexg | ⊢ ( ( 𝐶 ⊆ ( 𝐵 × 𝐴 ) ∧ ( 𝐵 × 𝐴 ) ∈ V ) → 𝐶 ∈ V ) | |
| 12 | 11 | expcom | ⊢ ( ( 𝐵 × 𝐴 ) ∈ V → ( 𝐶 ⊆ ( 𝐵 × 𝐴 ) → 𝐶 ∈ V ) ) |
| 13 | 10 12 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐶 ⊆ ( 𝐵 × 𝐴 ) → 𝐶 ∈ V ) ) |
| 14 | elpwg | ⊢ ( 𝐶 ∈ V → ( 𝐶 ∈ 𝒫 ( 𝐵 × 𝐴 ) ↔ 𝐶 ⊆ ( 𝐵 × 𝐴 ) ) ) | |
| 15 | 14 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐶 ∈ V → ( 𝐶 ∈ 𝒫 ( 𝐵 × 𝐴 ) ↔ 𝐶 ⊆ ( 𝐵 × 𝐴 ) ) ) ) |
| 16 | 8 13 15 | pm5.21ndd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐶 ∈ 𝒫 ( 𝐵 × 𝐴 ) ↔ 𝐶 ⊆ ( 𝐵 × 𝐴 ) ) ) |
| 17 | 16 | anbi2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( Fun 𝐶 ∧ 𝐶 ∈ 𝒫 ( 𝐵 × 𝐴 ) ) ↔ ( Fun 𝐶 ∧ 𝐶 ⊆ ( 𝐵 × 𝐴 ) ) ) ) |
| 18 | 6 17 | bitrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐶 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( Fun 𝐶 ∧ 𝐶 ⊆ ( 𝐵 × 𝐴 ) ) ) ) |