This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the property " F is a Cauchy sequence of metric D ". Part of Definition 1.4-3 of Kreyszig p. 28. The condition F C_ ( CC X. X ) allows to use objects more general than sequences when convenient; see the comment in df-lm . (Contributed by NM, 7-Dec-2006) (Revised by Mario Carneiro, 14-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iscau | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caufval | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( Cau ‘ 𝐷 ) = { 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) } ) | |
| 2 | 1 | eleq2d | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) } ) ) |
| 3 | reseq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) = ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) ) | |
| 4 | eqidd | ⊢ ( 𝑓 = 𝐹 → ( ℤ≥ ‘ 𝑘 ) = ( ℤ≥ ‘ 𝑘 ) ) | |
| 5 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 6 | 5 | oveq1d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) = ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ) |
| 7 | 3 4 6 | feq123d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
| 8 | 7 | rexbidv | ⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∃ 𝑘 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
| 9 | 8 | ralbidv | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
| 10 | 9 | elrab | ⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) } ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
| 11 | 2 10 | bitrdi | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) |