This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for infpssr . (Contributed by Stefan O'Rear, 30-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infpssrlem.a | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | |
| infpssrlem.c | ⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) | ||
| infpssrlem.d | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 ∖ 𝐵 ) ) | ||
| infpssrlem.e | ⊢ 𝐺 = ( rec ( ◡ 𝐹 , 𝐶 ) ↾ ω ) | ||
| Assertion | infpssrlem4 | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ω ∧ 𝑁 ∈ 𝑀 ) → ( 𝐺 ‘ 𝑀 ) ≠ ( 𝐺 ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infpssrlem.a | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | |
| 2 | infpssrlem.c | ⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) | |
| 3 | infpssrlem.d | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 ∖ 𝐵 ) ) | |
| 4 | infpssrlem.e | ⊢ 𝐺 = ( rec ( ◡ 𝐹 , 𝐶 ) ↾ ω ) | |
| 5 | fveq2 | ⊢ ( 𝑐 = ∅ → ( 𝐺 ‘ 𝑐 ) = ( 𝐺 ‘ ∅ ) ) | |
| 6 | 5 | neeq1d | ⊢ ( 𝑐 = ∅ → ( ( 𝐺 ‘ 𝑐 ) ≠ ( 𝐺 ‘ 𝑏 ) ↔ ( 𝐺 ‘ ∅ ) ≠ ( 𝐺 ‘ 𝑏 ) ) ) |
| 7 | 6 | raleqbi1dv | ⊢ ( 𝑐 = ∅ → ( ∀ 𝑏 ∈ 𝑐 ( 𝐺 ‘ 𝑐 ) ≠ ( 𝐺 ‘ 𝑏 ) ↔ ∀ 𝑏 ∈ ∅ ( 𝐺 ‘ ∅ ) ≠ ( 𝐺 ‘ 𝑏 ) ) ) |
| 8 | 7 | imbi2d | ⊢ ( 𝑐 = ∅ → ( ( 𝜑 → ∀ 𝑏 ∈ 𝑐 ( 𝐺 ‘ 𝑐 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ↔ ( 𝜑 → ∀ 𝑏 ∈ ∅ ( 𝐺 ‘ ∅ ) ≠ ( 𝐺 ‘ 𝑏 ) ) ) ) |
| 9 | fveq2 | ⊢ ( 𝑐 = 𝑑 → ( 𝐺 ‘ 𝑐 ) = ( 𝐺 ‘ 𝑑 ) ) | |
| 10 | 9 | neeq1d | ⊢ ( 𝑐 = 𝑑 → ( ( 𝐺 ‘ 𝑐 ) ≠ ( 𝐺 ‘ 𝑏 ) ↔ ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ) |
| 11 | 10 | raleqbi1dv | ⊢ ( 𝑐 = 𝑑 → ( ∀ 𝑏 ∈ 𝑐 ( 𝐺 ‘ 𝑐 ) ≠ ( 𝐺 ‘ 𝑏 ) ↔ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑐 = 𝑑 → ( ( 𝜑 → ∀ 𝑏 ∈ 𝑐 ( 𝐺 ‘ 𝑐 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ↔ ( 𝜑 → ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ) ) |
| 13 | fveq2 | ⊢ ( 𝑐 = suc 𝑑 → ( 𝐺 ‘ 𝑐 ) = ( 𝐺 ‘ suc 𝑑 ) ) | |
| 14 | 13 | neeq1d | ⊢ ( 𝑐 = suc 𝑑 → ( ( 𝐺 ‘ 𝑐 ) ≠ ( 𝐺 ‘ 𝑏 ) ↔ ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ) |
| 15 | 14 | raleqbi1dv | ⊢ ( 𝑐 = suc 𝑑 → ( ∀ 𝑏 ∈ 𝑐 ( 𝐺 ‘ 𝑐 ) ≠ ( 𝐺 ‘ 𝑏 ) ↔ ∀ 𝑏 ∈ suc 𝑑 ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ) |
| 16 | 15 | imbi2d | ⊢ ( 𝑐 = suc 𝑑 → ( ( 𝜑 → ∀ 𝑏 ∈ 𝑐 ( 𝐺 ‘ 𝑐 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ↔ ( 𝜑 → ∀ 𝑏 ∈ suc 𝑑 ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ) ) |
| 17 | fveq2 | ⊢ ( 𝑐 = 𝑀 → ( 𝐺 ‘ 𝑐 ) = ( 𝐺 ‘ 𝑀 ) ) | |
| 18 | 17 | neeq1d | ⊢ ( 𝑐 = 𝑀 → ( ( 𝐺 ‘ 𝑐 ) ≠ ( 𝐺 ‘ 𝑏 ) ↔ ( 𝐺 ‘ 𝑀 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ) |
| 19 | 18 | raleqbi1dv | ⊢ ( 𝑐 = 𝑀 → ( ∀ 𝑏 ∈ 𝑐 ( 𝐺 ‘ 𝑐 ) ≠ ( 𝐺 ‘ 𝑏 ) ↔ ∀ 𝑏 ∈ 𝑀 ( 𝐺 ‘ 𝑀 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ) |
| 20 | 19 | imbi2d | ⊢ ( 𝑐 = 𝑀 → ( ( 𝜑 → ∀ 𝑏 ∈ 𝑐 ( 𝐺 ‘ 𝑐 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ↔ ( 𝜑 → ∀ 𝑏 ∈ 𝑀 ( 𝐺 ‘ 𝑀 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ) ) |
| 21 | ral0 | ⊢ ∀ 𝑏 ∈ ∅ ( 𝐺 ‘ ∅ ) ≠ ( 𝐺 ‘ 𝑏 ) | |
| 22 | 21 | a1i | ⊢ ( 𝜑 → ∀ 𝑏 ∈ ∅ ( 𝐺 ‘ ∅ ) ≠ ( 𝐺 ‘ 𝑏 ) ) |
| 23 | f1ocnv | ⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 24 | f1of | ⊢ ( ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 25 | 2 23 24 | 3syl | ⊢ ( 𝜑 → ◡ 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 26 | 25 | adantl | ⊢ ( ( 𝑑 ∈ ω ∧ 𝜑 ) → ◡ 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 27 | 1 2 3 4 | infpssrlem3 | ⊢ ( 𝜑 → 𝐺 : ω ⟶ 𝐴 ) |
| 28 | 27 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ω ) → ( 𝐺 ‘ 𝑑 ) ∈ 𝐴 ) |
| 29 | 28 | ancoms | ⊢ ( ( 𝑑 ∈ ω ∧ 𝜑 ) → ( 𝐺 ‘ 𝑑 ) ∈ 𝐴 ) |
| 30 | 26 29 | ffvelcdmd | ⊢ ( ( 𝑑 ∈ ω ∧ 𝜑 ) → ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) ∈ 𝐵 ) |
| 31 | 3 | eldifbd | ⊢ ( 𝜑 → ¬ 𝐶 ∈ 𝐵 ) |
| 32 | 31 | adantl | ⊢ ( ( 𝑑 ∈ ω ∧ 𝜑 ) → ¬ 𝐶 ∈ 𝐵 ) |
| 33 | nelne2 | ⊢ ( ( ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) ∈ 𝐵 ∧ ¬ 𝐶 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) ≠ 𝐶 ) | |
| 34 | 30 32 33 | syl2anc | ⊢ ( ( 𝑑 ∈ ω ∧ 𝜑 ) → ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) ≠ 𝐶 ) |
| 35 | 1 2 3 4 | infpssrlem2 | ⊢ ( 𝑑 ∈ ω → ( 𝐺 ‘ suc 𝑑 ) = ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) ) |
| 36 | 35 | adantr | ⊢ ( ( 𝑑 ∈ ω ∧ 𝜑 ) → ( 𝐺 ‘ suc 𝑑 ) = ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) ) |
| 37 | 1 2 3 4 | infpssrlem1 | ⊢ ( 𝜑 → ( 𝐺 ‘ ∅ ) = 𝐶 ) |
| 38 | 37 | adantl | ⊢ ( ( 𝑑 ∈ ω ∧ 𝜑 ) → ( 𝐺 ‘ ∅ ) = 𝐶 ) |
| 39 | 34 36 38 | 3netr4d | ⊢ ( ( 𝑑 ∈ ω ∧ 𝜑 ) → ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ ∅ ) ) |
| 40 | 39 | 3adant3 | ⊢ ( ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) → ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ ∅ ) ) |
| 41 | 5 | neeq2d | ⊢ ( 𝑐 = ∅ → ( ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ 𝑐 ) ↔ ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ ∅ ) ) ) |
| 42 | 40 41 | imbitrrid | ⊢ ( 𝑐 = ∅ → ( ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) → ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ 𝑐 ) ) ) |
| 43 | 42 | adantrd | ⊢ ( 𝑐 = ∅ → ( ( ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ∧ 𝑐 ∈ suc 𝑑 ) → ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ 𝑐 ) ) ) |
| 44 | simpr | ⊢ ( ( 𝑑 ∈ ω ∧ 𝑐 ∈ suc 𝑑 ) → 𝑐 ∈ suc 𝑑 ) | |
| 45 | peano2 | ⊢ ( 𝑑 ∈ ω → suc 𝑑 ∈ ω ) | |
| 46 | 45 | adantr | ⊢ ( ( 𝑑 ∈ ω ∧ 𝑐 ∈ suc 𝑑 ) → suc 𝑑 ∈ ω ) |
| 47 | elnn | ⊢ ( ( 𝑐 ∈ suc 𝑑 ∧ suc 𝑑 ∈ ω ) → 𝑐 ∈ ω ) | |
| 48 | 44 46 47 | syl2anc | ⊢ ( ( 𝑑 ∈ ω ∧ 𝑐 ∈ suc 𝑑 ) → 𝑐 ∈ ω ) |
| 49 | 48 | 3ad2antl1 | ⊢ ( ( ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ∧ 𝑐 ∈ suc 𝑑 ) → 𝑐 ∈ ω ) |
| 50 | 49 | adantl | ⊢ ( ( 𝑐 ≠ ∅ ∧ ( ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ∧ 𝑐 ∈ suc 𝑑 ) ) → 𝑐 ∈ ω ) |
| 51 | simpl | ⊢ ( ( 𝑐 ≠ ∅ ∧ ( ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ∧ 𝑐 ∈ suc 𝑑 ) ) → 𝑐 ≠ ∅ ) | |
| 52 | nnsuc | ⊢ ( ( 𝑐 ∈ ω ∧ 𝑐 ≠ ∅ ) → ∃ 𝑏 ∈ ω 𝑐 = suc 𝑏 ) | |
| 53 | 50 51 52 | syl2anc | ⊢ ( ( 𝑐 ≠ ∅ ∧ ( ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ∧ 𝑐 ∈ suc 𝑑 ) ) → ∃ 𝑏 ∈ ω 𝑐 = suc 𝑏 ) |
| 54 | nfv | ⊢ Ⅎ 𝑏 𝑑 ∈ ω | |
| 55 | nfv | ⊢ Ⅎ 𝑏 𝜑 | |
| 56 | nfra1 | ⊢ Ⅎ 𝑏 ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) | |
| 57 | 54 55 56 | nf3an | ⊢ Ⅎ 𝑏 ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) |
| 58 | nfv | ⊢ Ⅎ 𝑏 𝑐 ∈ suc 𝑑 | |
| 59 | 57 58 | nfan | ⊢ Ⅎ 𝑏 ( ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ∧ 𝑐 ∈ suc 𝑑 ) |
| 60 | nfv | ⊢ Ⅎ 𝑏 ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ 𝑐 ) | |
| 61 | simpl3 | ⊢ ( ( ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ∧ ( suc 𝑏 ∈ suc 𝑑 ∧ 𝑏 ∈ ω ) ) → ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) | |
| 62 | simpr | ⊢ ( ( 𝑑 ∈ ω ∧ suc 𝑏 ∈ suc 𝑑 ) → suc 𝑏 ∈ suc 𝑑 ) | |
| 63 | nnord | ⊢ ( 𝑑 ∈ ω → Ord 𝑑 ) | |
| 64 | 63 | adantr | ⊢ ( ( 𝑑 ∈ ω ∧ suc 𝑏 ∈ suc 𝑑 ) → Ord 𝑑 ) |
| 65 | ordsucelsuc | ⊢ ( Ord 𝑑 → ( 𝑏 ∈ 𝑑 ↔ suc 𝑏 ∈ suc 𝑑 ) ) | |
| 66 | 64 65 | syl | ⊢ ( ( 𝑑 ∈ ω ∧ suc 𝑏 ∈ suc 𝑑 ) → ( 𝑏 ∈ 𝑑 ↔ suc 𝑏 ∈ suc 𝑑 ) ) |
| 67 | 62 66 | mpbird | ⊢ ( ( 𝑑 ∈ ω ∧ suc 𝑏 ∈ suc 𝑑 ) → 𝑏 ∈ 𝑑 ) |
| 68 | 67 | 3ad2antl1 | ⊢ ( ( ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ∧ suc 𝑏 ∈ suc 𝑑 ) → 𝑏 ∈ 𝑑 ) |
| 69 | 68 | adantrr | ⊢ ( ( ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ∧ ( suc 𝑏 ∈ suc 𝑑 ∧ 𝑏 ∈ ω ) ) → 𝑏 ∈ 𝑑 ) |
| 70 | rsp | ⊢ ( ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) → ( 𝑏 ∈ 𝑑 → ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ) | |
| 71 | 61 69 70 | sylc | ⊢ ( ( ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ∧ ( suc 𝑏 ∈ suc 𝑑 ∧ 𝑏 ∈ ω ) ) → ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) |
| 72 | f1of1 | ⊢ ( ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐴 –1-1→ 𝐵 ) | |
| 73 | 2 23 72 | 3syl | ⊢ ( 𝜑 → ◡ 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 74 | 73 | ad2antlr | ⊢ ( ( ( 𝑑 ∈ ω ∧ 𝜑 ) ∧ 𝑏 ∈ ω ) → ◡ 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 75 | 29 | adantr | ⊢ ( ( ( 𝑑 ∈ ω ∧ 𝜑 ) ∧ 𝑏 ∈ ω ) → ( 𝐺 ‘ 𝑑 ) ∈ 𝐴 ) |
| 76 | 27 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ω ) → ( 𝐺 ‘ 𝑏 ) ∈ 𝐴 ) |
| 77 | 76 | adantll | ⊢ ( ( ( 𝑑 ∈ ω ∧ 𝜑 ) ∧ 𝑏 ∈ ω ) → ( 𝐺 ‘ 𝑏 ) ∈ 𝐴 ) |
| 78 | f1fveq | ⊢ ( ( ◡ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ ( ( 𝐺 ‘ 𝑑 ) ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑏 ) ∈ 𝐴 ) ) → ( ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) = ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑏 ) ) ↔ ( 𝐺 ‘ 𝑑 ) = ( 𝐺 ‘ 𝑏 ) ) ) | |
| 79 | 74 75 77 78 | syl12anc | ⊢ ( ( ( 𝑑 ∈ ω ∧ 𝜑 ) ∧ 𝑏 ∈ ω ) → ( ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) = ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑏 ) ) ↔ ( 𝐺 ‘ 𝑑 ) = ( 𝐺 ‘ 𝑏 ) ) ) |
| 80 | 79 | necon3bid | ⊢ ( ( ( 𝑑 ∈ ω ∧ 𝜑 ) ∧ 𝑏 ∈ ω ) → ( ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) ≠ ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑏 ) ) ↔ ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ) |
| 81 | 80 | biimprd | ⊢ ( ( ( 𝑑 ∈ ω ∧ 𝜑 ) ∧ 𝑏 ∈ ω ) → ( ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) → ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) ≠ ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑏 ) ) ) ) |
| 82 | 35 | adantr | ⊢ ( ( 𝑑 ∈ ω ∧ 𝑏 ∈ ω ) → ( 𝐺 ‘ suc 𝑑 ) = ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) ) |
| 83 | 1 2 3 4 | infpssrlem2 | ⊢ ( 𝑏 ∈ ω → ( 𝐺 ‘ suc 𝑏 ) = ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑏 ) ) ) |
| 84 | 83 | adantl | ⊢ ( ( 𝑑 ∈ ω ∧ 𝑏 ∈ ω ) → ( 𝐺 ‘ suc 𝑏 ) = ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑏 ) ) ) |
| 85 | 82 84 | neeq12d | ⊢ ( ( 𝑑 ∈ ω ∧ 𝑏 ∈ ω ) → ( ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ suc 𝑏 ) ↔ ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) ≠ ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑏 ) ) ) ) |
| 86 | 85 | adantlr | ⊢ ( ( ( 𝑑 ∈ ω ∧ 𝜑 ) ∧ 𝑏 ∈ ω ) → ( ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ suc 𝑏 ) ↔ ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) ≠ ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑏 ) ) ) ) |
| 87 | 81 86 | sylibrd | ⊢ ( ( ( 𝑑 ∈ ω ∧ 𝜑 ) ∧ 𝑏 ∈ ω ) → ( ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) → ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ suc 𝑏 ) ) ) |
| 88 | 87 | adantrl | ⊢ ( ( ( 𝑑 ∈ ω ∧ 𝜑 ) ∧ ( suc 𝑏 ∈ suc 𝑑 ∧ 𝑏 ∈ ω ) ) → ( ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) → ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ suc 𝑏 ) ) ) |
| 89 | 88 | 3adantl3 | ⊢ ( ( ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ∧ ( suc 𝑏 ∈ suc 𝑑 ∧ 𝑏 ∈ ω ) ) → ( ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) → ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ suc 𝑏 ) ) ) |
| 90 | 71 89 | mpd | ⊢ ( ( ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ∧ ( suc 𝑏 ∈ suc 𝑑 ∧ 𝑏 ∈ ω ) ) → ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ suc 𝑏 ) ) |
| 91 | 90 | expr | ⊢ ( ( ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ∧ suc 𝑏 ∈ suc 𝑑 ) → ( 𝑏 ∈ ω → ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ suc 𝑏 ) ) ) |
| 92 | eleq1 | ⊢ ( 𝑐 = suc 𝑏 → ( 𝑐 ∈ suc 𝑑 ↔ suc 𝑏 ∈ suc 𝑑 ) ) | |
| 93 | 92 | anbi2d | ⊢ ( 𝑐 = suc 𝑏 → ( ( ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ∧ 𝑐 ∈ suc 𝑑 ) ↔ ( ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ∧ suc 𝑏 ∈ suc 𝑑 ) ) ) |
| 94 | fveq2 | ⊢ ( 𝑐 = suc 𝑏 → ( 𝐺 ‘ 𝑐 ) = ( 𝐺 ‘ suc 𝑏 ) ) | |
| 95 | 94 | neeq2d | ⊢ ( 𝑐 = suc 𝑏 → ( ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ 𝑐 ) ↔ ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ suc 𝑏 ) ) ) |
| 96 | 95 | imbi2d | ⊢ ( 𝑐 = suc 𝑏 → ( ( 𝑏 ∈ ω → ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ 𝑐 ) ) ↔ ( 𝑏 ∈ ω → ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ suc 𝑏 ) ) ) ) |
| 97 | 93 96 | imbi12d | ⊢ ( 𝑐 = suc 𝑏 → ( ( ( ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ∧ 𝑐 ∈ suc 𝑑 ) → ( 𝑏 ∈ ω → ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ 𝑐 ) ) ) ↔ ( ( ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ∧ suc 𝑏 ∈ suc 𝑑 ) → ( 𝑏 ∈ ω → ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ suc 𝑏 ) ) ) ) ) |
| 98 | 91 97 | mpbiri | ⊢ ( 𝑐 = suc 𝑏 → ( ( ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ∧ 𝑐 ∈ suc 𝑑 ) → ( 𝑏 ∈ ω → ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ 𝑐 ) ) ) ) |
| 99 | 98 | com3l | ⊢ ( ( ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ∧ 𝑐 ∈ suc 𝑑 ) → ( 𝑏 ∈ ω → ( 𝑐 = suc 𝑏 → ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ 𝑐 ) ) ) ) |
| 100 | 59 60 99 | rexlimd | ⊢ ( ( ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ∧ 𝑐 ∈ suc 𝑑 ) → ( ∃ 𝑏 ∈ ω 𝑐 = suc 𝑏 → ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ 𝑐 ) ) ) |
| 101 | 100 | adantl | ⊢ ( ( 𝑐 ≠ ∅ ∧ ( ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ∧ 𝑐 ∈ suc 𝑑 ) ) → ( ∃ 𝑏 ∈ ω 𝑐 = suc 𝑏 → ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ 𝑐 ) ) ) |
| 102 | 53 101 | mpd | ⊢ ( ( 𝑐 ≠ ∅ ∧ ( ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ∧ 𝑐 ∈ suc 𝑑 ) ) → ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ 𝑐 ) ) |
| 103 | 102 | ex | ⊢ ( 𝑐 ≠ ∅ → ( ( ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ∧ 𝑐 ∈ suc 𝑑 ) → ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ 𝑐 ) ) ) |
| 104 | 43 103 | pm2.61ine | ⊢ ( ( ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ∧ 𝑐 ∈ suc 𝑑 ) → ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ 𝑐 ) ) |
| 105 | 104 | ralrimiva | ⊢ ( ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) → ∀ 𝑐 ∈ suc 𝑑 ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ 𝑐 ) ) |
| 106 | fveq2 | ⊢ ( 𝑐 = 𝑏 → ( 𝐺 ‘ 𝑐 ) = ( 𝐺 ‘ 𝑏 ) ) | |
| 107 | 106 | neeq2d | ⊢ ( 𝑐 = 𝑏 → ( ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ 𝑐 ) ↔ ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ) |
| 108 | 107 | cbvralvw | ⊢ ( ∀ 𝑐 ∈ suc 𝑑 ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ 𝑐 ) ↔ ∀ 𝑏 ∈ suc 𝑑 ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) |
| 109 | 105 108 | sylib | ⊢ ( ( 𝑑 ∈ ω ∧ 𝜑 ∧ ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) → ∀ 𝑏 ∈ suc 𝑑 ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) |
| 110 | 109 | 3exp | ⊢ ( 𝑑 ∈ ω → ( 𝜑 → ( ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) → ∀ 𝑏 ∈ suc 𝑑 ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ) ) |
| 111 | 110 | a2d | ⊢ ( 𝑑 ∈ ω → ( ( 𝜑 → ∀ 𝑏 ∈ 𝑑 ( 𝐺 ‘ 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) → ( 𝜑 → ∀ 𝑏 ∈ suc 𝑑 ( 𝐺 ‘ suc 𝑑 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ) ) |
| 112 | 8 12 16 20 22 111 | finds | ⊢ ( 𝑀 ∈ ω → ( 𝜑 → ∀ 𝑏 ∈ 𝑀 ( 𝐺 ‘ 𝑀 ) ≠ ( 𝐺 ‘ 𝑏 ) ) ) |
| 113 | 112 | impcom | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ω ) → ∀ 𝑏 ∈ 𝑀 ( 𝐺 ‘ 𝑀 ) ≠ ( 𝐺 ‘ 𝑏 ) ) |
| 114 | fveq2 | ⊢ ( 𝑏 = 𝑁 → ( 𝐺 ‘ 𝑏 ) = ( 𝐺 ‘ 𝑁 ) ) | |
| 115 | 114 | neeq2d | ⊢ ( 𝑏 = 𝑁 → ( ( 𝐺 ‘ 𝑀 ) ≠ ( 𝐺 ‘ 𝑏 ) ↔ ( 𝐺 ‘ 𝑀 ) ≠ ( 𝐺 ‘ 𝑁 ) ) ) |
| 116 | 115 | rspccv | ⊢ ( ∀ 𝑏 ∈ 𝑀 ( 𝐺 ‘ 𝑀 ) ≠ ( 𝐺 ‘ 𝑏 ) → ( 𝑁 ∈ 𝑀 → ( 𝐺 ‘ 𝑀 ) ≠ ( 𝐺 ‘ 𝑁 ) ) ) |
| 117 | 113 116 | syl | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ω ) → ( 𝑁 ∈ 𝑀 → ( 𝐺 ‘ 𝑀 ) ≠ ( 𝐺 ‘ 𝑁 ) ) ) |
| 118 | 117 | 3impia | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ω ∧ 𝑁 ∈ 𝑀 ) → ( 𝐺 ‘ 𝑀 ) ≠ ( 𝐺 ‘ 𝑁 ) ) |