This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for infpssr . (Contributed by Stefan O'Rear, 30-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infpssrlem.a | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | |
| infpssrlem.c | ⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) | ||
| infpssrlem.d | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 ∖ 𝐵 ) ) | ||
| infpssrlem.e | ⊢ 𝐺 = ( rec ( ◡ 𝐹 , 𝐶 ) ↾ ω ) | ||
| Assertion | infpssrlem5 | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 → ω ≼ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infpssrlem.a | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | |
| 2 | infpssrlem.c | ⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) | |
| 3 | infpssrlem.d | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 ∖ 𝐵 ) ) | |
| 4 | infpssrlem.e | ⊢ 𝐺 = ( rec ( ◡ 𝐹 , 𝐶 ) ↾ ω ) | |
| 5 | 1 2 3 4 | infpssrlem3 | ⊢ ( 𝜑 → 𝐺 : ω ⟶ 𝐴 ) |
| 6 | simpll | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑏 ∈ 𝑐 ) → 𝜑 ) | |
| 7 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑏 ∈ 𝑐 ) → 𝑐 ∈ ω ) | |
| 8 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑏 ∈ 𝑐 ) → 𝑏 ∈ 𝑐 ) | |
| 9 | 1 2 3 4 | infpssrlem4 | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ω ∧ 𝑏 ∈ 𝑐 ) → ( 𝐺 ‘ 𝑐 ) ≠ ( 𝐺 ‘ 𝑏 ) ) |
| 10 | 6 7 8 9 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑏 ∈ 𝑐 ) → ( 𝐺 ‘ 𝑐 ) ≠ ( 𝐺 ‘ 𝑏 ) ) |
| 11 | 10 | necomd | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑏 ∈ 𝑐 ) → ( 𝐺 ‘ 𝑏 ) ≠ ( 𝐺 ‘ 𝑐 ) ) |
| 12 | simpll | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑐 ∈ 𝑏 ) → 𝜑 ) | |
| 13 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑐 ∈ 𝑏 ) → 𝑏 ∈ ω ) | |
| 14 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑐 ∈ 𝑏 ) → 𝑐 ∈ 𝑏 ) | |
| 15 | 1 2 3 4 | infpssrlem4 | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ω ∧ 𝑐 ∈ 𝑏 ) → ( 𝐺 ‘ 𝑏 ) ≠ ( 𝐺 ‘ 𝑐 ) ) |
| 16 | 12 13 14 15 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑐 ∈ 𝑏 ) → ( 𝐺 ‘ 𝑏 ) ≠ ( 𝐺 ‘ 𝑐 ) ) |
| 17 | 11 16 | jaodan | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ ( 𝑏 ∈ 𝑐 ∨ 𝑐 ∈ 𝑏 ) ) → ( 𝐺 ‘ 𝑏 ) ≠ ( 𝐺 ‘ 𝑐 ) ) |
| 18 | 17 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) → ( ( 𝑏 ∈ 𝑐 ∨ 𝑐 ∈ 𝑏 ) → ( 𝐺 ‘ 𝑏 ) ≠ ( 𝐺 ‘ 𝑐 ) ) ) |
| 19 | 18 | necon2bd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) → ( ( 𝐺 ‘ 𝑏 ) = ( 𝐺 ‘ 𝑐 ) → ¬ ( 𝑏 ∈ 𝑐 ∨ 𝑐 ∈ 𝑏 ) ) ) |
| 20 | nnord | ⊢ ( 𝑏 ∈ ω → Ord 𝑏 ) | |
| 21 | nnord | ⊢ ( 𝑐 ∈ ω → Ord 𝑐 ) | |
| 22 | ordtri3 | ⊢ ( ( Ord 𝑏 ∧ Ord 𝑐 ) → ( 𝑏 = 𝑐 ↔ ¬ ( 𝑏 ∈ 𝑐 ∨ 𝑐 ∈ 𝑏 ) ) ) | |
| 23 | 20 21 22 | syl2an | ⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) → ( 𝑏 = 𝑐 ↔ ¬ ( 𝑏 ∈ 𝑐 ∨ 𝑐 ∈ 𝑏 ) ) ) |
| 24 | 23 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) → ( 𝑏 = 𝑐 ↔ ¬ ( 𝑏 ∈ 𝑐 ∨ 𝑐 ∈ 𝑏 ) ) ) |
| 25 | 19 24 | sylibrd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) → ( ( 𝐺 ‘ 𝑏 ) = ( 𝐺 ‘ 𝑐 ) → 𝑏 = 𝑐 ) ) |
| 26 | 25 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑏 ∈ ω ∀ 𝑐 ∈ ω ( ( 𝐺 ‘ 𝑏 ) = ( 𝐺 ‘ 𝑐 ) → 𝑏 = 𝑐 ) ) |
| 27 | dff13 | ⊢ ( 𝐺 : ω –1-1→ 𝐴 ↔ ( 𝐺 : ω ⟶ 𝐴 ∧ ∀ 𝑏 ∈ ω ∀ 𝑐 ∈ ω ( ( 𝐺 ‘ 𝑏 ) = ( 𝐺 ‘ 𝑐 ) → 𝑏 = 𝑐 ) ) ) | |
| 28 | 5 26 27 | sylanbrc | ⊢ ( 𝜑 → 𝐺 : ω –1-1→ 𝐴 ) |
| 29 | f1domg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐺 : ω –1-1→ 𝐴 → ω ≼ 𝐴 ) ) | |
| 30 | 28 29 | syl5com | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 → ω ≼ 𝐴 ) ) |