This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for infpssr . (Contributed by Stefan O'Rear, 30-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infpssrlem.a | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | |
| infpssrlem.c | ⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) | ||
| infpssrlem.d | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 ∖ 𝐵 ) ) | ||
| infpssrlem.e | ⊢ 𝐺 = ( rec ( ◡ 𝐹 , 𝐶 ) ↾ ω ) | ||
| Assertion | infpssrlem2 | ⊢ ( 𝑀 ∈ ω → ( 𝐺 ‘ suc 𝑀 ) = ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑀 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infpssrlem.a | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | |
| 2 | infpssrlem.c | ⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) | |
| 3 | infpssrlem.d | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 ∖ 𝐵 ) ) | |
| 4 | infpssrlem.e | ⊢ 𝐺 = ( rec ( ◡ 𝐹 , 𝐶 ) ↾ ω ) | |
| 5 | frsuc | ⊢ ( 𝑀 ∈ ω → ( ( rec ( ◡ 𝐹 , 𝐶 ) ↾ ω ) ‘ suc 𝑀 ) = ( ◡ 𝐹 ‘ ( ( rec ( ◡ 𝐹 , 𝐶 ) ↾ ω ) ‘ 𝑀 ) ) ) | |
| 6 | 4 | fveq1i | ⊢ ( 𝐺 ‘ suc 𝑀 ) = ( ( rec ( ◡ 𝐹 , 𝐶 ) ↾ ω ) ‘ suc 𝑀 ) |
| 7 | 4 | fveq1i | ⊢ ( 𝐺 ‘ 𝑀 ) = ( ( rec ( ◡ 𝐹 , 𝐶 ) ↾ ω ) ‘ 𝑀 ) |
| 8 | 7 | fveq2i | ⊢ ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑀 ) ) = ( ◡ 𝐹 ‘ ( ( rec ( ◡ 𝐹 , 𝐶 ) ↾ ω ) ‘ 𝑀 ) ) |
| 9 | 5 6 8 | 3eqtr4g | ⊢ ( 𝑀 ∈ ω → ( 𝐺 ‘ suc 𝑀 ) = ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑀 ) ) ) |