This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for infpssr . (Contributed by Stefan O'Rear, 30-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infpssrlem.a | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | |
| infpssrlem.c | ⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) | ||
| infpssrlem.d | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 ∖ 𝐵 ) ) | ||
| infpssrlem.e | ⊢ 𝐺 = ( rec ( ◡ 𝐹 , 𝐶 ) ↾ ω ) | ||
| Assertion | infpssrlem3 | ⊢ ( 𝜑 → 𝐺 : ω ⟶ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infpssrlem.a | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | |
| 2 | infpssrlem.c | ⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) | |
| 3 | infpssrlem.d | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 ∖ 𝐵 ) ) | |
| 4 | infpssrlem.e | ⊢ 𝐺 = ( rec ( ◡ 𝐹 , 𝐶 ) ↾ ω ) | |
| 5 | frfnom | ⊢ ( rec ( ◡ 𝐹 , 𝐶 ) ↾ ω ) Fn ω | |
| 6 | 4 | fneq1i | ⊢ ( 𝐺 Fn ω ↔ ( rec ( ◡ 𝐹 , 𝐶 ) ↾ ω ) Fn ω ) |
| 7 | 5 6 | mpbir | ⊢ 𝐺 Fn ω |
| 8 | 7 | a1i | ⊢ ( 𝜑 → 𝐺 Fn ω ) |
| 9 | fveq2 | ⊢ ( 𝑐 = ∅ → ( 𝐺 ‘ 𝑐 ) = ( 𝐺 ‘ ∅ ) ) | |
| 10 | 9 | eleq1d | ⊢ ( 𝑐 = ∅ → ( ( 𝐺 ‘ 𝑐 ) ∈ 𝐴 ↔ ( 𝐺 ‘ ∅ ) ∈ 𝐴 ) ) |
| 11 | fveq2 | ⊢ ( 𝑐 = 𝑏 → ( 𝐺 ‘ 𝑐 ) = ( 𝐺 ‘ 𝑏 ) ) | |
| 12 | 11 | eleq1d | ⊢ ( 𝑐 = 𝑏 → ( ( 𝐺 ‘ 𝑐 ) ∈ 𝐴 ↔ ( 𝐺 ‘ 𝑏 ) ∈ 𝐴 ) ) |
| 13 | fveq2 | ⊢ ( 𝑐 = suc 𝑏 → ( 𝐺 ‘ 𝑐 ) = ( 𝐺 ‘ suc 𝑏 ) ) | |
| 14 | 13 | eleq1d | ⊢ ( 𝑐 = suc 𝑏 → ( ( 𝐺 ‘ 𝑐 ) ∈ 𝐴 ↔ ( 𝐺 ‘ suc 𝑏 ) ∈ 𝐴 ) ) |
| 15 | 1 2 3 4 | infpssrlem1 | ⊢ ( 𝜑 → ( 𝐺 ‘ ∅ ) = 𝐶 ) |
| 16 | 3 | eldifad | ⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) |
| 17 | 15 16 | eqeltrd | ⊢ ( 𝜑 → ( 𝐺 ‘ ∅ ) ∈ 𝐴 ) |
| 18 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑏 ) ∈ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |
| 19 | f1ocnv | ⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 20 | f1of | ⊢ ( ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 21 | 2 19 20 | 3syl | ⊢ ( 𝜑 → ◡ 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 22 | 21 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑏 ) ∈ 𝐴 ) → ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑏 ) ) ∈ 𝐵 ) |
| 23 | 18 22 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑏 ) ∈ 𝐴 ) → ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑏 ) ) ∈ 𝐴 ) |
| 24 | 1 2 3 4 | infpssrlem2 | ⊢ ( 𝑏 ∈ ω → ( 𝐺 ‘ suc 𝑏 ) = ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑏 ) ) ) |
| 25 | 24 | eleq1d | ⊢ ( 𝑏 ∈ ω → ( ( 𝐺 ‘ suc 𝑏 ) ∈ 𝐴 ↔ ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑏 ) ) ∈ 𝐴 ) ) |
| 26 | 23 25 | imbitrrid | ⊢ ( 𝑏 ∈ ω → ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑏 ) ∈ 𝐴 ) → ( 𝐺 ‘ suc 𝑏 ) ∈ 𝐴 ) ) |
| 27 | 26 | expd | ⊢ ( 𝑏 ∈ ω → ( 𝜑 → ( ( 𝐺 ‘ 𝑏 ) ∈ 𝐴 → ( 𝐺 ‘ suc 𝑏 ) ∈ 𝐴 ) ) ) |
| 28 | 10 12 14 17 27 | finds2 | ⊢ ( 𝑐 ∈ ω → ( 𝜑 → ( 𝐺 ‘ 𝑐 ) ∈ 𝐴 ) ) |
| 29 | 28 | com12 | ⊢ ( 𝜑 → ( 𝑐 ∈ ω → ( 𝐺 ‘ 𝑐 ) ∈ 𝐴 ) ) |
| 30 | 29 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑐 ∈ ω ( 𝐺 ‘ 𝑐 ) ∈ 𝐴 ) |
| 31 | ffnfv | ⊢ ( 𝐺 : ω ⟶ 𝐴 ↔ ( 𝐺 Fn ω ∧ ∀ 𝑐 ∈ ω ( 𝐺 ‘ 𝑐 ) ∈ 𝐴 ) ) | |
| 32 | 8 30 31 | sylanbrc | ⊢ ( 𝜑 → 𝐺 : ω ⟶ 𝐴 ) |