This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for infpssr . (Contributed by Stefan O'Rear, 30-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infpssrlem.a | |- ( ph -> B C_ A ) |
|
| infpssrlem.c | |- ( ph -> F : B -1-1-onto-> A ) |
||
| infpssrlem.d | |- ( ph -> C e. ( A \ B ) ) |
||
| infpssrlem.e | |- G = ( rec ( `' F , C ) |` _om ) |
||
| Assertion | infpssrlem4 | |- ( ( ph /\ M e. _om /\ N e. M ) -> ( G ` M ) =/= ( G ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infpssrlem.a | |- ( ph -> B C_ A ) |
|
| 2 | infpssrlem.c | |- ( ph -> F : B -1-1-onto-> A ) |
|
| 3 | infpssrlem.d | |- ( ph -> C e. ( A \ B ) ) |
|
| 4 | infpssrlem.e | |- G = ( rec ( `' F , C ) |` _om ) |
|
| 5 | fveq2 | |- ( c = (/) -> ( G ` c ) = ( G ` (/) ) ) |
|
| 6 | 5 | neeq1d | |- ( c = (/) -> ( ( G ` c ) =/= ( G ` b ) <-> ( G ` (/) ) =/= ( G ` b ) ) ) |
| 7 | 6 | raleqbi1dv | |- ( c = (/) -> ( A. b e. c ( G ` c ) =/= ( G ` b ) <-> A. b e. (/) ( G ` (/) ) =/= ( G ` b ) ) ) |
| 8 | 7 | imbi2d | |- ( c = (/) -> ( ( ph -> A. b e. c ( G ` c ) =/= ( G ` b ) ) <-> ( ph -> A. b e. (/) ( G ` (/) ) =/= ( G ` b ) ) ) ) |
| 9 | fveq2 | |- ( c = d -> ( G ` c ) = ( G ` d ) ) |
|
| 10 | 9 | neeq1d | |- ( c = d -> ( ( G ` c ) =/= ( G ` b ) <-> ( G ` d ) =/= ( G ` b ) ) ) |
| 11 | 10 | raleqbi1dv | |- ( c = d -> ( A. b e. c ( G ` c ) =/= ( G ` b ) <-> A. b e. d ( G ` d ) =/= ( G ` b ) ) ) |
| 12 | 11 | imbi2d | |- ( c = d -> ( ( ph -> A. b e. c ( G ` c ) =/= ( G ` b ) ) <-> ( ph -> A. b e. d ( G ` d ) =/= ( G ` b ) ) ) ) |
| 13 | fveq2 | |- ( c = suc d -> ( G ` c ) = ( G ` suc d ) ) |
|
| 14 | 13 | neeq1d | |- ( c = suc d -> ( ( G ` c ) =/= ( G ` b ) <-> ( G ` suc d ) =/= ( G ` b ) ) ) |
| 15 | 14 | raleqbi1dv | |- ( c = suc d -> ( A. b e. c ( G ` c ) =/= ( G ` b ) <-> A. b e. suc d ( G ` suc d ) =/= ( G ` b ) ) ) |
| 16 | 15 | imbi2d | |- ( c = suc d -> ( ( ph -> A. b e. c ( G ` c ) =/= ( G ` b ) ) <-> ( ph -> A. b e. suc d ( G ` suc d ) =/= ( G ` b ) ) ) ) |
| 17 | fveq2 | |- ( c = M -> ( G ` c ) = ( G ` M ) ) |
|
| 18 | 17 | neeq1d | |- ( c = M -> ( ( G ` c ) =/= ( G ` b ) <-> ( G ` M ) =/= ( G ` b ) ) ) |
| 19 | 18 | raleqbi1dv | |- ( c = M -> ( A. b e. c ( G ` c ) =/= ( G ` b ) <-> A. b e. M ( G ` M ) =/= ( G ` b ) ) ) |
| 20 | 19 | imbi2d | |- ( c = M -> ( ( ph -> A. b e. c ( G ` c ) =/= ( G ` b ) ) <-> ( ph -> A. b e. M ( G ` M ) =/= ( G ` b ) ) ) ) |
| 21 | ral0 | |- A. b e. (/) ( G ` (/) ) =/= ( G ` b ) |
|
| 22 | 21 | a1i | |- ( ph -> A. b e. (/) ( G ` (/) ) =/= ( G ` b ) ) |
| 23 | f1ocnv | |- ( F : B -1-1-onto-> A -> `' F : A -1-1-onto-> B ) |
|
| 24 | f1of | |- ( `' F : A -1-1-onto-> B -> `' F : A --> B ) |
|
| 25 | 2 23 24 | 3syl | |- ( ph -> `' F : A --> B ) |
| 26 | 25 | adantl | |- ( ( d e. _om /\ ph ) -> `' F : A --> B ) |
| 27 | 1 2 3 4 | infpssrlem3 | |- ( ph -> G : _om --> A ) |
| 28 | 27 | ffvelcdmda | |- ( ( ph /\ d e. _om ) -> ( G ` d ) e. A ) |
| 29 | 28 | ancoms | |- ( ( d e. _om /\ ph ) -> ( G ` d ) e. A ) |
| 30 | 26 29 | ffvelcdmd | |- ( ( d e. _om /\ ph ) -> ( `' F ` ( G ` d ) ) e. B ) |
| 31 | 3 | eldifbd | |- ( ph -> -. C e. B ) |
| 32 | 31 | adantl | |- ( ( d e. _om /\ ph ) -> -. C e. B ) |
| 33 | nelne2 | |- ( ( ( `' F ` ( G ` d ) ) e. B /\ -. C e. B ) -> ( `' F ` ( G ` d ) ) =/= C ) |
|
| 34 | 30 32 33 | syl2anc | |- ( ( d e. _om /\ ph ) -> ( `' F ` ( G ` d ) ) =/= C ) |
| 35 | 1 2 3 4 | infpssrlem2 | |- ( d e. _om -> ( G ` suc d ) = ( `' F ` ( G ` d ) ) ) |
| 36 | 35 | adantr | |- ( ( d e. _om /\ ph ) -> ( G ` suc d ) = ( `' F ` ( G ` d ) ) ) |
| 37 | 1 2 3 4 | infpssrlem1 | |- ( ph -> ( G ` (/) ) = C ) |
| 38 | 37 | adantl | |- ( ( d e. _om /\ ph ) -> ( G ` (/) ) = C ) |
| 39 | 34 36 38 | 3netr4d | |- ( ( d e. _om /\ ph ) -> ( G ` suc d ) =/= ( G ` (/) ) ) |
| 40 | 39 | 3adant3 | |- ( ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) -> ( G ` suc d ) =/= ( G ` (/) ) ) |
| 41 | 5 | neeq2d | |- ( c = (/) -> ( ( G ` suc d ) =/= ( G ` c ) <-> ( G ` suc d ) =/= ( G ` (/) ) ) ) |
| 42 | 40 41 | imbitrrid | |- ( c = (/) -> ( ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) -> ( G ` suc d ) =/= ( G ` c ) ) ) |
| 43 | 42 | adantrd | |- ( c = (/) -> ( ( ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) /\ c e. suc d ) -> ( G ` suc d ) =/= ( G ` c ) ) ) |
| 44 | simpr | |- ( ( d e. _om /\ c e. suc d ) -> c e. suc d ) |
|
| 45 | peano2 | |- ( d e. _om -> suc d e. _om ) |
|
| 46 | 45 | adantr | |- ( ( d e. _om /\ c e. suc d ) -> suc d e. _om ) |
| 47 | elnn | |- ( ( c e. suc d /\ suc d e. _om ) -> c e. _om ) |
|
| 48 | 44 46 47 | syl2anc | |- ( ( d e. _om /\ c e. suc d ) -> c e. _om ) |
| 49 | 48 | 3ad2antl1 | |- ( ( ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) /\ c e. suc d ) -> c e. _om ) |
| 50 | 49 | adantl | |- ( ( c =/= (/) /\ ( ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) /\ c e. suc d ) ) -> c e. _om ) |
| 51 | simpl | |- ( ( c =/= (/) /\ ( ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) /\ c e. suc d ) ) -> c =/= (/) ) |
|
| 52 | nnsuc | |- ( ( c e. _om /\ c =/= (/) ) -> E. b e. _om c = suc b ) |
|
| 53 | 50 51 52 | syl2anc | |- ( ( c =/= (/) /\ ( ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) /\ c e. suc d ) ) -> E. b e. _om c = suc b ) |
| 54 | nfv | |- F/ b d e. _om |
|
| 55 | nfv | |- F/ b ph |
|
| 56 | nfra1 | |- F/ b A. b e. d ( G ` d ) =/= ( G ` b ) |
|
| 57 | 54 55 56 | nf3an | |- F/ b ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) |
| 58 | nfv | |- F/ b c e. suc d |
|
| 59 | 57 58 | nfan | |- F/ b ( ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) /\ c e. suc d ) |
| 60 | nfv | |- F/ b ( G ` suc d ) =/= ( G ` c ) |
|
| 61 | simpl3 | |- ( ( ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) /\ ( suc b e. suc d /\ b e. _om ) ) -> A. b e. d ( G ` d ) =/= ( G ` b ) ) |
|
| 62 | simpr | |- ( ( d e. _om /\ suc b e. suc d ) -> suc b e. suc d ) |
|
| 63 | nnord | |- ( d e. _om -> Ord d ) |
|
| 64 | 63 | adantr | |- ( ( d e. _om /\ suc b e. suc d ) -> Ord d ) |
| 65 | ordsucelsuc | |- ( Ord d -> ( b e. d <-> suc b e. suc d ) ) |
|
| 66 | 64 65 | syl | |- ( ( d e. _om /\ suc b e. suc d ) -> ( b e. d <-> suc b e. suc d ) ) |
| 67 | 62 66 | mpbird | |- ( ( d e. _om /\ suc b e. suc d ) -> b e. d ) |
| 68 | 67 | 3ad2antl1 | |- ( ( ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) /\ suc b e. suc d ) -> b e. d ) |
| 69 | 68 | adantrr | |- ( ( ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) /\ ( suc b e. suc d /\ b e. _om ) ) -> b e. d ) |
| 70 | rsp | |- ( A. b e. d ( G ` d ) =/= ( G ` b ) -> ( b e. d -> ( G ` d ) =/= ( G ` b ) ) ) |
|
| 71 | 61 69 70 | sylc | |- ( ( ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) /\ ( suc b e. suc d /\ b e. _om ) ) -> ( G ` d ) =/= ( G ` b ) ) |
| 72 | f1of1 | |- ( `' F : A -1-1-onto-> B -> `' F : A -1-1-> B ) |
|
| 73 | 2 23 72 | 3syl | |- ( ph -> `' F : A -1-1-> B ) |
| 74 | 73 | ad2antlr | |- ( ( ( d e. _om /\ ph ) /\ b e. _om ) -> `' F : A -1-1-> B ) |
| 75 | 29 | adantr | |- ( ( ( d e. _om /\ ph ) /\ b e. _om ) -> ( G ` d ) e. A ) |
| 76 | 27 | ffvelcdmda | |- ( ( ph /\ b e. _om ) -> ( G ` b ) e. A ) |
| 77 | 76 | adantll | |- ( ( ( d e. _om /\ ph ) /\ b e. _om ) -> ( G ` b ) e. A ) |
| 78 | f1fveq | |- ( ( `' F : A -1-1-> B /\ ( ( G ` d ) e. A /\ ( G ` b ) e. A ) ) -> ( ( `' F ` ( G ` d ) ) = ( `' F ` ( G ` b ) ) <-> ( G ` d ) = ( G ` b ) ) ) |
|
| 79 | 74 75 77 78 | syl12anc | |- ( ( ( d e. _om /\ ph ) /\ b e. _om ) -> ( ( `' F ` ( G ` d ) ) = ( `' F ` ( G ` b ) ) <-> ( G ` d ) = ( G ` b ) ) ) |
| 80 | 79 | necon3bid | |- ( ( ( d e. _om /\ ph ) /\ b e. _om ) -> ( ( `' F ` ( G ` d ) ) =/= ( `' F ` ( G ` b ) ) <-> ( G ` d ) =/= ( G ` b ) ) ) |
| 81 | 80 | biimprd | |- ( ( ( d e. _om /\ ph ) /\ b e. _om ) -> ( ( G ` d ) =/= ( G ` b ) -> ( `' F ` ( G ` d ) ) =/= ( `' F ` ( G ` b ) ) ) ) |
| 82 | 35 | adantr | |- ( ( d e. _om /\ b e. _om ) -> ( G ` suc d ) = ( `' F ` ( G ` d ) ) ) |
| 83 | 1 2 3 4 | infpssrlem2 | |- ( b e. _om -> ( G ` suc b ) = ( `' F ` ( G ` b ) ) ) |
| 84 | 83 | adantl | |- ( ( d e. _om /\ b e. _om ) -> ( G ` suc b ) = ( `' F ` ( G ` b ) ) ) |
| 85 | 82 84 | neeq12d | |- ( ( d e. _om /\ b e. _om ) -> ( ( G ` suc d ) =/= ( G ` suc b ) <-> ( `' F ` ( G ` d ) ) =/= ( `' F ` ( G ` b ) ) ) ) |
| 86 | 85 | adantlr | |- ( ( ( d e. _om /\ ph ) /\ b e. _om ) -> ( ( G ` suc d ) =/= ( G ` suc b ) <-> ( `' F ` ( G ` d ) ) =/= ( `' F ` ( G ` b ) ) ) ) |
| 87 | 81 86 | sylibrd | |- ( ( ( d e. _om /\ ph ) /\ b e. _om ) -> ( ( G ` d ) =/= ( G ` b ) -> ( G ` suc d ) =/= ( G ` suc b ) ) ) |
| 88 | 87 | adantrl | |- ( ( ( d e. _om /\ ph ) /\ ( suc b e. suc d /\ b e. _om ) ) -> ( ( G ` d ) =/= ( G ` b ) -> ( G ` suc d ) =/= ( G ` suc b ) ) ) |
| 89 | 88 | 3adantl3 | |- ( ( ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) /\ ( suc b e. suc d /\ b e. _om ) ) -> ( ( G ` d ) =/= ( G ` b ) -> ( G ` suc d ) =/= ( G ` suc b ) ) ) |
| 90 | 71 89 | mpd | |- ( ( ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) /\ ( suc b e. suc d /\ b e. _om ) ) -> ( G ` suc d ) =/= ( G ` suc b ) ) |
| 91 | 90 | expr | |- ( ( ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) /\ suc b e. suc d ) -> ( b e. _om -> ( G ` suc d ) =/= ( G ` suc b ) ) ) |
| 92 | eleq1 | |- ( c = suc b -> ( c e. suc d <-> suc b e. suc d ) ) |
|
| 93 | 92 | anbi2d | |- ( c = suc b -> ( ( ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) /\ c e. suc d ) <-> ( ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) /\ suc b e. suc d ) ) ) |
| 94 | fveq2 | |- ( c = suc b -> ( G ` c ) = ( G ` suc b ) ) |
|
| 95 | 94 | neeq2d | |- ( c = suc b -> ( ( G ` suc d ) =/= ( G ` c ) <-> ( G ` suc d ) =/= ( G ` suc b ) ) ) |
| 96 | 95 | imbi2d | |- ( c = suc b -> ( ( b e. _om -> ( G ` suc d ) =/= ( G ` c ) ) <-> ( b e. _om -> ( G ` suc d ) =/= ( G ` suc b ) ) ) ) |
| 97 | 93 96 | imbi12d | |- ( c = suc b -> ( ( ( ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) /\ c e. suc d ) -> ( b e. _om -> ( G ` suc d ) =/= ( G ` c ) ) ) <-> ( ( ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) /\ suc b e. suc d ) -> ( b e. _om -> ( G ` suc d ) =/= ( G ` suc b ) ) ) ) ) |
| 98 | 91 97 | mpbiri | |- ( c = suc b -> ( ( ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) /\ c e. suc d ) -> ( b e. _om -> ( G ` suc d ) =/= ( G ` c ) ) ) ) |
| 99 | 98 | com3l | |- ( ( ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) /\ c e. suc d ) -> ( b e. _om -> ( c = suc b -> ( G ` suc d ) =/= ( G ` c ) ) ) ) |
| 100 | 59 60 99 | rexlimd | |- ( ( ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) /\ c e. suc d ) -> ( E. b e. _om c = suc b -> ( G ` suc d ) =/= ( G ` c ) ) ) |
| 101 | 100 | adantl | |- ( ( c =/= (/) /\ ( ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) /\ c e. suc d ) ) -> ( E. b e. _om c = suc b -> ( G ` suc d ) =/= ( G ` c ) ) ) |
| 102 | 53 101 | mpd | |- ( ( c =/= (/) /\ ( ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) /\ c e. suc d ) ) -> ( G ` suc d ) =/= ( G ` c ) ) |
| 103 | 102 | ex | |- ( c =/= (/) -> ( ( ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) /\ c e. suc d ) -> ( G ` suc d ) =/= ( G ` c ) ) ) |
| 104 | 43 103 | pm2.61ine | |- ( ( ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) /\ c e. suc d ) -> ( G ` suc d ) =/= ( G ` c ) ) |
| 105 | 104 | ralrimiva | |- ( ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) -> A. c e. suc d ( G ` suc d ) =/= ( G ` c ) ) |
| 106 | fveq2 | |- ( c = b -> ( G ` c ) = ( G ` b ) ) |
|
| 107 | 106 | neeq2d | |- ( c = b -> ( ( G ` suc d ) =/= ( G ` c ) <-> ( G ` suc d ) =/= ( G ` b ) ) ) |
| 108 | 107 | cbvralvw | |- ( A. c e. suc d ( G ` suc d ) =/= ( G ` c ) <-> A. b e. suc d ( G ` suc d ) =/= ( G ` b ) ) |
| 109 | 105 108 | sylib | |- ( ( d e. _om /\ ph /\ A. b e. d ( G ` d ) =/= ( G ` b ) ) -> A. b e. suc d ( G ` suc d ) =/= ( G ` b ) ) |
| 110 | 109 | 3exp | |- ( d e. _om -> ( ph -> ( A. b e. d ( G ` d ) =/= ( G ` b ) -> A. b e. suc d ( G ` suc d ) =/= ( G ` b ) ) ) ) |
| 111 | 110 | a2d | |- ( d e. _om -> ( ( ph -> A. b e. d ( G ` d ) =/= ( G ` b ) ) -> ( ph -> A. b e. suc d ( G ` suc d ) =/= ( G ` b ) ) ) ) |
| 112 | 8 12 16 20 22 111 | finds | |- ( M e. _om -> ( ph -> A. b e. M ( G ` M ) =/= ( G ` b ) ) ) |
| 113 | 112 | impcom | |- ( ( ph /\ M e. _om ) -> A. b e. M ( G ` M ) =/= ( G ` b ) ) |
| 114 | fveq2 | |- ( b = N -> ( G ` b ) = ( G ` N ) ) |
|
| 115 | 114 | neeq2d | |- ( b = N -> ( ( G ` M ) =/= ( G ` b ) <-> ( G ` M ) =/= ( G ` N ) ) ) |
| 116 | 115 | rspccv | |- ( A. b e. M ( G ` M ) =/= ( G ` b ) -> ( N e. M -> ( G ` M ) =/= ( G ` N ) ) ) |
| 117 | 113 116 | syl | |- ( ( ph /\ M e. _om ) -> ( N e. M -> ( G ` M ) =/= ( G ` N ) ) ) |
| 118 | 117 | 3impia | |- ( ( ph /\ M e. _om /\ N e. M ) -> ( G ` M ) =/= ( G ` N ) ) |