This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dedekind infinity implies existence of a denumerable subset: take a single point witnessing the proper subset relation and iterate the embedding. (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infpssr | ⊢ ( ( 𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴 ) → ω ≼ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssnel | ⊢ ( 𝑋 ⊊ 𝐴 → ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝑋 ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴 ) → ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝑋 ) ) |
| 3 | eldif | ⊢ ( 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) ↔ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝑋 ) ) | |
| 4 | pssss | ⊢ ( 𝑋 ⊊ 𝐴 → 𝑋 ⊆ 𝐴 ) | |
| 5 | bren | ⊢ ( 𝑋 ≈ 𝐴 ↔ ∃ 𝑓 𝑓 : 𝑋 –1-1-onto→ 𝐴 ) | |
| 6 | simpr | ⊢ ( ( ( 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) ∧ 𝑋 ⊆ 𝐴 ) ∧ 𝑓 : 𝑋 –1-1-onto→ 𝐴 ) → 𝑓 : 𝑋 –1-1-onto→ 𝐴 ) | |
| 7 | f1ofo | ⊢ ( 𝑓 : 𝑋 –1-1-onto→ 𝐴 → 𝑓 : 𝑋 –onto→ 𝐴 ) | |
| 8 | forn | ⊢ ( 𝑓 : 𝑋 –onto→ 𝐴 → ran 𝑓 = 𝐴 ) | |
| 9 | 6 7 8 | 3syl | ⊢ ( ( ( 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) ∧ 𝑋 ⊆ 𝐴 ) ∧ 𝑓 : 𝑋 –1-1-onto→ 𝐴 ) → ran 𝑓 = 𝐴 ) |
| 10 | vex | ⊢ 𝑓 ∈ V | |
| 11 | 10 | rnex | ⊢ ran 𝑓 ∈ V |
| 12 | 9 11 | eqeltrrdi | ⊢ ( ( ( 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) ∧ 𝑋 ⊆ 𝐴 ) ∧ 𝑓 : 𝑋 –1-1-onto→ 𝐴 ) → 𝐴 ∈ V ) |
| 13 | simplr | ⊢ ( ( ( 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) ∧ 𝑋 ⊆ 𝐴 ) ∧ 𝑓 : 𝑋 –1-1-onto→ 𝐴 ) → 𝑋 ⊆ 𝐴 ) | |
| 14 | simpll | ⊢ ( ( ( 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) ∧ 𝑋 ⊆ 𝐴 ) ∧ 𝑓 : 𝑋 –1-1-onto→ 𝐴 ) → 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) ) | |
| 15 | eqid | ⊢ ( rec ( ◡ 𝑓 , 𝑦 ) ↾ ω ) = ( rec ( ◡ 𝑓 , 𝑦 ) ↾ ω ) | |
| 16 | 13 6 14 15 | infpssrlem5 | ⊢ ( ( ( 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) ∧ 𝑋 ⊆ 𝐴 ) ∧ 𝑓 : 𝑋 –1-1-onto→ 𝐴 ) → ( 𝐴 ∈ V → ω ≼ 𝐴 ) ) |
| 17 | 12 16 | mpd | ⊢ ( ( ( 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) ∧ 𝑋 ⊆ 𝐴 ) ∧ 𝑓 : 𝑋 –1-1-onto→ 𝐴 ) → ω ≼ 𝐴 ) |
| 18 | 17 | ex | ⊢ ( ( 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑓 : 𝑋 –1-1-onto→ 𝐴 → ω ≼ 𝐴 ) ) |
| 19 | 18 | exlimdv | ⊢ ( ( 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) ∧ 𝑋 ⊆ 𝐴 ) → ( ∃ 𝑓 𝑓 : 𝑋 –1-1-onto→ 𝐴 → ω ≼ 𝐴 ) ) |
| 20 | 5 19 | biimtrid | ⊢ ( ( 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑋 ≈ 𝐴 → ω ≼ 𝐴 ) ) |
| 21 | 20 | ex | ⊢ ( 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) → ( 𝑋 ⊆ 𝐴 → ( 𝑋 ≈ 𝐴 → ω ≼ 𝐴 ) ) ) |
| 22 | 4 21 | syl5 | ⊢ ( 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) → ( 𝑋 ⊊ 𝐴 → ( 𝑋 ≈ 𝐴 → ω ≼ 𝐴 ) ) ) |
| 23 | 22 | impd | ⊢ ( 𝑦 ∈ ( 𝐴 ∖ 𝑋 ) → ( ( 𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴 ) → ω ≼ 𝐴 ) ) |
| 24 | 3 23 | sylbir | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝑋 ) → ( ( 𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴 ) → ω ≼ 𝐴 ) ) |
| 25 | 24 | exlimiv | ⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝑋 ) → ( ( 𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴 ) → ω ≼ 𝐴 ) ) |
| 26 | 2 25 | mpcom | ⊢ ( ( 𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴 ) → ω ≼ 𝐴 ) |