This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image structure's scalar multiplication is a function. (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasvscaf.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| imasvscaf.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| imasvscaf.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | ||
| imasvscaf.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | ||
| imasvscaf.g | ⊢ 𝐺 = ( Scalar ‘ 𝑅 ) | ||
| imasvscaf.k | ⊢ 𝐾 = ( Base ‘ 𝐺 ) | ||
| imasvscaf.q | ⊢ · = ( ·𝑠 ‘ 𝑅 ) | ||
| imasvscaf.s | ⊢ ∙ = ( ·𝑠 ‘ 𝑈 ) | ||
| imasvscaf.e | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑞 ) → ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) | ||
| Assertion | imasvscafn | ⊢ ( 𝜑 → ∙ Fn ( 𝐾 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasvscaf.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| 2 | imasvscaf.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | imasvscaf.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | |
| 4 | imasvscaf.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | |
| 5 | imasvscaf.g | ⊢ 𝐺 = ( Scalar ‘ 𝑅 ) | |
| 6 | imasvscaf.k | ⊢ 𝐾 = ( Base ‘ 𝐺 ) | |
| 7 | imasvscaf.q | ⊢ · = ( ·𝑠 ‘ 𝑅 ) | |
| 8 | imasvscaf.s | ⊢ ∙ = ( ·𝑠 ‘ 𝑈 ) | |
| 9 | imasvscaf.e | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑞 ) → ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) | |
| 10 | eqid | ⊢ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) = ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) | |
| 11 | fvex | ⊢ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ∈ V | |
| 12 | 10 11 | fnmpoi | ⊢ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) Fn ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) |
| 13 | fnrel | ⊢ ( ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) Fn ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) → Rel ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) | |
| 14 | 12 13 | ax-mp | ⊢ Rel ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
| 15 | 14 | rgenw | ⊢ ∀ 𝑞 ∈ 𝑉 Rel ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
| 16 | reliun | ⊢ ( Rel ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ↔ ∀ 𝑞 ∈ 𝑉 Rel ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) | |
| 17 | 15 16 | mpbir | ⊢ Rel ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
| 18 | 1 2 3 4 5 6 7 8 | imasvsca | ⊢ ( 𝜑 → ∙ = ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
| 19 | 18 | releqd | ⊢ ( 𝜑 → ( Rel ∙ ↔ Rel ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) ) |
| 20 | 17 19 | mpbiri | ⊢ ( 𝜑 → Rel ∙ ) |
| 21 | dffn2 | ⊢ ( ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) Fn ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ↔ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) : ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ⟶ V ) | |
| 22 | 12 21 | mpbi | ⊢ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) : ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ⟶ V |
| 23 | fssxp | ⊢ ( ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) : ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ⟶ V → ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ( ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) × V ) ) | |
| 24 | 22 23 | ax-mp | ⊢ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ( ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) × V ) |
| 25 | fof | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐹 : 𝑉 ⟶ 𝐵 ) | |
| 26 | 3 25 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑉 ⟶ 𝐵 ) |
| 27 | 26 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑞 ) ∈ 𝐵 ) |
| 28 | 27 | snssd | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑉 ) → { ( 𝐹 ‘ 𝑞 ) } ⊆ 𝐵 ) |
| 29 | xpss2 | ⊢ ( { ( 𝐹 ‘ 𝑞 ) } ⊆ 𝐵 → ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ⊆ ( 𝐾 × 𝐵 ) ) | |
| 30 | xpss1 | ⊢ ( ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ⊆ ( 𝐾 × 𝐵 ) → ( ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) × V ) ⊆ ( ( 𝐾 × 𝐵 ) × V ) ) | |
| 31 | 28 29 30 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑉 ) → ( ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) × V ) ⊆ ( ( 𝐾 × 𝐵 ) × V ) ) |
| 32 | 24 31 | sstrid | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑉 ) → ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ( ( 𝐾 × 𝐵 ) × V ) ) |
| 33 | 32 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ( ( 𝐾 × 𝐵 ) × V ) ) |
| 34 | iunss | ⊢ ( ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ( ( 𝐾 × 𝐵 ) × V ) ↔ ∀ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ( ( 𝐾 × 𝐵 ) × V ) ) | |
| 35 | 33 34 | sylibr | ⊢ ( 𝜑 → ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ( ( 𝐾 × 𝐵 ) × V ) ) |
| 36 | 18 35 | eqsstrd | ⊢ ( 𝜑 → ∙ ⊆ ( ( 𝐾 × 𝐵 ) × V ) ) |
| 37 | dmss | ⊢ ( ∙ ⊆ ( ( 𝐾 × 𝐵 ) × V ) → dom ∙ ⊆ dom ( ( 𝐾 × 𝐵 ) × V ) ) | |
| 38 | 36 37 | syl | ⊢ ( 𝜑 → dom ∙ ⊆ dom ( ( 𝐾 × 𝐵 ) × V ) ) |
| 39 | vn0 | ⊢ V ≠ ∅ | |
| 40 | dmxp | ⊢ ( V ≠ ∅ → dom ( ( 𝐾 × 𝐵 ) × V ) = ( 𝐾 × 𝐵 ) ) | |
| 41 | 39 40 | ax-mp | ⊢ dom ( ( 𝐾 × 𝐵 ) × V ) = ( 𝐾 × 𝐵 ) |
| 42 | 38 41 | sseqtrdi | ⊢ ( 𝜑 → dom ∙ ⊆ ( 𝐾 × 𝐵 ) ) |
| 43 | forn | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) | |
| 44 | 3 43 | syl | ⊢ ( 𝜑 → ran 𝐹 = 𝐵 ) |
| 45 | 44 | xpeq2d | ⊢ ( 𝜑 → ( 𝐾 × ran 𝐹 ) = ( 𝐾 × 𝐵 ) ) |
| 46 | 42 45 | sseqtrrd | ⊢ ( 𝜑 → dom ∙ ⊆ ( 𝐾 × ran 𝐹 ) ) |
| 47 | df-br | ⊢ ( 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 ↔ 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ∙ ) | |
| 48 | 18 | eleq2d | ⊢ ( 𝜑 → ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ∙ ↔ 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) ) |
| 49 | 48 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ) → ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ∙ ↔ 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) ) |
| 50 | eliun | ⊢ ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ↔ ∃ 𝑞 ∈ 𝑉 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) | |
| 51 | df-3an | ⊢ ( ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ↔ ( ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑞 ∈ 𝑉 ) ) | |
| 52 | 10 | mpofun | ⊢ Fun ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
| 53 | funopfv | ⊢ ( Fun ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → ( ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ‘ 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ) = 𝑤 ) ) | |
| 54 | 52 53 | ax-mp | ⊢ ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → ( ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ‘ 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ) = 𝑤 ) |
| 55 | df-ov | ⊢ ( 𝑝 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ( 𝐹 ‘ 𝑎 ) ) = ( ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ‘ 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ) | |
| 56 | opex | ⊢ 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∈ V | |
| 57 | vex | ⊢ 𝑤 ∈ V | |
| 58 | 56 57 | opeldm | ⊢ ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∈ dom ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
| 59 | 10 11 | dmmpo | ⊢ dom ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) = ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) |
| 60 | 58 59 | eleqtrdi | ⊢ ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∈ ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ) |
| 61 | opelxp | ⊢ ( 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∈ ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ↔ ( 𝑝 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑎 ) ∈ { ( 𝐹 ‘ 𝑞 ) } ) ) | |
| 62 | 60 61 | sylib | ⊢ ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → ( 𝑝 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑎 ) ∈ { ( 𝐹 ‘ 𝑞 ) } ) ) |
| 63 | fvoveq1 | ⊢ ( 𝑧 = 𝑝 → ( 𝐹 ‘ ( 𝑧 · 𝑞 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) | |
| 64 | eqidd | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑎 ) → ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) | |
| 65 | fvoveq1 | ⊢ ( 𝑝 = 𝑧 → ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) = ( 𝐹 ‘ ( 𝑧 · 𝑞 ) ) ) | |
| 66 | eqidd | ⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ ( 𝑧 · 𝑞 ) ) = ( 𝐹 ‘ ( 𝑧 · 𝑞 ) ) ) | |
| 67 | 65 66 | cbvmpov | ⊢ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) = ( 𝑧 ∈ 𝐾 , 𝑦 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑧 · 𝑞 ) ) ) |
| 68 | 63 64 67 11 | ovmpo | ⊢ ( ( 𝑝 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑎 ) ∈ { ( 𝐹 ‘ 𝑞 ) } ) → ( 𝑝 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ( 𝐹 ‘ 𝑎 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
| 69 | 62 68 | syl | ⊢ ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → ( 𝑝 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ( 𝐹 ‘ 𝑎 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
| 70 | 55 69 | eqtr3id | ⊢ ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → ( ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ‘ 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
| 71 | 54 70 | eqtr3d | ⊢ ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
| 72 | 71 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) ∧ 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
| 73 | elsni | ⊢ ( ( 𝐹 ‘ 𝑎 ) ∈ { ( 𝐹 ‘ 𝑞 ) } → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑞 ) ) | |
| 74 | 62 73 | simpl2im | ⊢ ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑞 ) ) |
| 75 | 9 74 | impel | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) ∧ 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) → ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
| 76 | 72 75 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) ∧ 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) |
| 77 | 76 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) ) |
| 78 | 51 77 | sylan2br | ⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑞 ∈ 𝑉 ) ) → ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) ) |
| 79 | 78 | anassrs | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ) ∧ 𝑞 ∈ 𝑉 ) → ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) ) |
| 80 | 79 | rexlimdva | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ) → ( ∃ 𝑞 ∈ 𝑉 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) ) |
| 81 | 50 80 | biimtrid | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ) → ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) ) |
| 82 | 49 81 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ) → ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ∙ → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) ) |
| 83 | 47 82 | biimtrid | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ) → ( 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) ) |
| 84 | 83 | alrimiv | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ) → ∀ 𝑤 ( 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) ) |
| 85 | mo2icl | ⊢ ( ∀ 𝑤 ( 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) → ∃* 𝑤 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 ) | |
| 86 | 84 85 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ) → ∃* 𝑤 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 ) |
| 87 | 86 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐾 ∀ 𝑎 ∈ 𝑉 ∃* 𝑤 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 ) |
| 88 | fofn | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐹 Fn 𝑉 ) | |
| 89 | opeq2 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑎 ) → 〈 𝑝 , 𝑦 〉 = 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ) | |
| 90 | 89 | breq1d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑎 ) → ( 〈 𝑝 , 𝑦 〉 ∙ 𝑤 ↔ 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 ) ) |
| 91 | 90 | mobidv | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑎 ) → ( ∃* 𝑤 〈 𝑝 , 𝑦 〉 ∙ 𝑤 ↔ ∃* 𝑤 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 ) ) |
| 92 | 91 | ralrn | ⊢ ( 𝐹 Fn 𝑉 → ( ∀ 𝑦 ∈ ran 𝐹 ∃* 𝑤 〈 𝑝 , 𝑦 〉 ∙ 𝑤 ↔ ∀ 𝑎 ∈ 𝑉 ∃* 𝑤 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 ) ) |
| 93 | 3 88 92 | 3syl | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran 𝐹 ∃* 𝑤 〈 𝑝 , 𝑦 〉 ∙ 𝑤 ↔ ∀ 𝑎 ∈ 𝑉 ∃* 𝑤 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 ) ) |
| 94 | 93 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑝 ∈ 𝐾 ∀ 𝑦 ∈ ran 𝐹 ∃* 𝑤 〈 𝑝 , 𝑦 〉 ∙ 𝑤 ↔ ∀ 𝑝 ∈ 𝐾 ∀ 𝑎 ∈ 𝑉 ∃* 𝑤 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 ) ) |
| 95 | 87 94 | mpbird | ⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐾 ∀ 𝑦 ∈ ran 𝐹 ∃* 𝑤 〈 𝑝 , 𝑦 〉 ∙ 𝑤 ) |
| 96 | breq1 | ⊢ ( 𝑥 = 〈 𝑝 , 𝑦 〉 → ( 𝑥 ∙ 𝑤 ↔ 〈 𝑝 , 𝑦 〉 ∙ 𝑤 ) ) | |
| 97 | 96 | mobidv | ⊢ ( 𝑥 = 〈 𝑝 , 𝑦 〉 → ( ∃* 𝑤 𝑥 ∙ 𝑤 ↔ ∃* 𝑤 〈 𝑝 , 𝑦 〉 ∙ 𝑤 ) ) |
| 98 | 97 | ralxp | ⊢ ( ∀ 𝑥 ∈ ( 𝐾 × ran 𝐹 ) ∃* 𝑤 𝑥 ∙ 𝑤 ↔ ∀ 𝑝 ∈ 𝐾 ∀ 𝑦 ∈ ran 𝐹 ∃* 𝑤 〈 𝑝 , 𝑦 〉 ∙ 𝑤 ) |
| 99 | 95 98 | sylibr | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐾 × ran 𝐹 ) ∃* 𝑤 𝑥 ∙ 𝑤 ) |
| 100 | ssralv | ⊢ ( dom ∙ ⊆ ( 𝐾 × ran 𝐹 ) → ( ∀ 𝑥 ∈ ( 𝐾 × ran 𝐹 ) ∃* 𝑤 𝑥 ∙ 𝑤 → ∀ 𝑥 ∈ dom ∙ ∃* 𝑤 𝑥 ∙ 𝑤 ) ) | |
| 101 | 46 99 100 | sylc | ⊢ ( 𝜑 → ∀ 𝑥 ∈ dom ∙ ∃* 𝑤 𝑥 ∙ 𝑤 ) |
| 102 | dffun7 | ⊢ ( Fun ∙ ↔ ( Rel ∙ ∧ ∀ 𝑥 ∈ dom ∙ ∃* 𝑤 𝑥 ∙ 𝑤 ) ) | |
| 103 | 20 101 102 | sylanbrc | ⊢ ( 𝜑 → Fun ∙ ) |
| 104 | eqimss2 | ⊢ ( ∙ = ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ∙ ) | |
| 105 | 18 104 | syl | ⊢ ( 𝜑 → ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ∙ ) |
| 106 | iunss | ⊢ ( ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ∙ ↔ ∀ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ∙ ) | |
| 107 | 105 106 | sylib | ⊢ ( 𝜑 → ∀ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ∙ ) |
| 108 | 107 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑉 ) → ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ∙ ) |
| 109 | 108 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ∙ ) |
| 110 | dmss | ⊢ ( ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ∙ → dom ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ dom ∙ ) | |
| 111 | 109 110 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉 ) ) → dom ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ dom ∙ ) |
| 112 | 59 111 | eqsstrrid | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ⊆ dom ∙ ) |
| 113 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉 ) ) → 𝑝 ∈ 𝐾 ) | |
| 114 | fvex | ⊢ ( 𝐹 ‘ 𝑞 ) ∈ V | |
| 115 | 114 | snid | ⊢ ( 𝐹 ‘ 𝑞 ) ∈ { ( 𝐹 ‘ 𝑞 ) } |
| 116 | opelxpi | ⊢ ( ( 𝑝 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑞 ) ∈ { ( 𝐹 ‘ 𝑞 ) } ) → 〈 𝑝 , ( 𝐹 ‘ 𝑞 ) 〉 ∈ ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ) | |
| 117 | 113 115 116 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉 ) ) → 〈 𝑝 , ( 𝐹 ‘ 𝑞 ) 〉 ∈ ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ) |
| 118 | 112 117 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉 ) ) → 〈 𝑝 , ( 𝐹 ‘ 𝑞 ) 〉 ∈ dom ∙ ) |
| 119 | 118 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐾 ∀ 𝑞 ∈ 𝑉 〈 𝑝 , ( 𝐹 ‘ 𝑞 ) 〉 ∈ dom ∙ ) |
| 120 | opeq2 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑞 ) → 〈 𝑝 , 𝑦 〉 = 〈 𝑝 , ( 𝐹 ‘ 𝑞 ) 〉 ) | |
| 121 | 120 | eleq1d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑞 ) → ( 〈 𝑝 , 𝑦 〉 ∈ dom ∙ ↔ 〈 𝑝 , ( 𝐹 ‘ 𝑞 ) 〉 ∈ dom ∙ ) ) |
| 122 | 121 | ralrn | ⊢ ( 𝐹 Fn 𝑉 → ( ∀ 𝑦 ∈ ran 𝐹 〈 𝑝 , 𝑦 〉 ∈ dom ∙ ↔ ∀ 𝑞 ∈ 𝑉 〈 𝑝 , ( 𝐹 ‘ 𝑞 ) 〉 ∈ dom ∙ ) ) |
| 123 | 3 88 122 | 3syl | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran 𝐹 〈 𝑝 , 𝑦 〉 ∈ dom ∙ ↔ ∀ 𝑞 ∈ 𝑉 〈 𝑝 , ( 𝐹 ‘ 𝑞 ) 〉 ∈ dom ∙ ) ) |
| 124 | 123 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑝 ∈ 𝐾 ∀ 𝑦 ∈ ran 𝐹 〈 𝑝 , 𝑦 〉 ∈ dom ∙ ↔ ∀ 𝑝 ∈ 𝐾 ∀ 𝑞 ∈ 𝑉 〈 𝑝 , ( 𝐹 ‘ 𝑞 ) 〉 ∈ dom ∙ ) ) |
| 125 | 119 124 | mpbird | ⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐾 ∀ 𝑦 ∈ ran 𝐹 〈 𝑝 , 𝑦 〉 ∈ dom ∙ ) |
| 126 | eleq1 | ⊢ ( 𝑥 = 〈 𝑝 , 𝑦 〉 → ( 𝑥 ∈ dom ∙ ↔ 〈 𝑝 , 𝑦 〉 ∈ dom ∙ ) ) | |
| 127 | 126 | ralxp | ⊢ ( ∀ 𝑥 ∈ ( 𝐾 × ran 𝐹 ) 𝑥 ∈ dom ∙ ↔ ∀ 𝑝 ∈ 𝐾 ∀ 𝑦 ∈ ran 𝐹 〈 𝑝 , 𝑦 〉 ∈ dom ∙ ) |
| 128 | 125 127 | sylibr | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐾 × ran 𝐹 ) 𝑥 ∈ dom ∙ ) |
| 129 | dfss3 | ⊢ ( ( 𝐾 × ran 𝐹 ) ⊆ dom ∙ ↔ ∀ 𝑥 ∈ ( 𝐾 × ran 𝐹 ) 𝑥 ∈ dom ∙ ) | |
| 130 | 128 129 | sylibr | ⊢ ( 𝜑 → ( 𝐾 × ran 𝐹 ) ⊆ dom ∙ ) |
| 131 | 45 130 | eqsstrrd | ⊢ ( 𝜑 → ( 𝐾 × 𝐵 ) ⊆ dom ∙ ) |
| 132 | 42 131 | eqssd | ⊢ ( 𝜑 → dom ∙ = ( 𝐾 × 𝐵 ) ) |
| 133 | df-fn | ⊢ ( ∙ Fn ( 𝐾 × 𝐵 ) ↔ ( Fun ∙ ∧ dom ∙ = ( 𝐾 × 𝐵 ) ) ) | |
| 134 | 103 132 133 | sylanbrc | ⊢ ( 𝜑 → ∙ Fn ( 𝐾 × 𝐵 ) ) |