This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a Cartesian product. Part of Theorem 3.13(x) of Monk1 p. 37. (Contributed by NM, 28-Jul-1995) (Proof shortened by Andrew Salmon, 27-Aug-2011) Avoid ax-10 , ax-11 , ax-12 . (Revised by SN, 12-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmxp | ⊢ ( 𝐵 ≠ ∅ → dom ( 𝐴 × 𝐵 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑥 ∈ V | |
| 2 | 1 | eldm | ⊢ ( 𝑥 ∈ dom ( 𝐴 × 𝐵 ) ↔ ∃ 𝑦 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ) |
| 3 | brxp | ⊢ ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) | |
| 4 | 3 | exbii | ⊢ ( ∃ 𝑦 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ↔ ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
| 5 | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 ∈ 𝐵 ) ) | |
| 6 | 2 4 5 | 3bitri | ⊢ ( 𝑥 ∈ dom ( 𝐴 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 ∈ 𝐵 ) ) |
| 7 | n0 | ⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐵 ) | |
| 8 | 7 | biimpi | ⊢ ( 𝐵 ≠ ∅ → ∃ 𝑦 𝑦 ∈ 𝐵 ) |
| 9 | 8 | biantrud | ⊢ ( 𝐵 ≠ ∅ → ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 ∈ 𝐵 ) ) ) |
| 10 | 6 9 | bitr4id | ⊢ ( 𝐵 ≠ ∅ → ( 𝑥 ∈ dom ( 𝐴 × 𝐵 ) ↔ 𝑥 ∈ 𝐴 ) ) |
| 11 | 10 | eqrdv | ⊢ ( 𝐵 ≠ ∅ → dom ( 𝐴 × 𝐵 ) = 𝐴 ) |