This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem for inferring "at most one". (Contributed by NM, 17-Oct-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mo2icl | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) → ∃* 𝑥 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝐴 ) ) | |
| 2 | 1 | imbi2d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝜑 → 𝑥 = 𝑦 ) ↔ ( 𝜑 → 𝑥 = 𝐴 ) ) ) |
| 3 | 2 | albidv | ⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ) ) |
| 4 | 3 | imbi1d | ⊢ ( 𝑦 = 𝐴 → ( ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ∃* 𝑥 𝜑 ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) → ∃* 𝑥 𝜑 ) ) ) |
| 5 | equequ2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑧 ) ) | |
| 6 | 5 | imbi2d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝜑 → 𝑥 = 𝑦 ) ↔ ( 𝜑 → 𝑥 = 𝑧 ) ) ) |
| 7 | 6 | albidv | ⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ) |
| 8 | 7 | 19.8aw | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 9 | df-mo | ⊢ ( ∃* 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) | |
| 10 | 8 9 | sylibr | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ∃* 𝑥 𝜑 ) |
| 11 | 4 10 | vtoclg | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) → ∃* 𝑥 𝜑 ) ) |
| 12 | eqvisset | ⊢ ( 𝑥 = 𝐴 → 𝐴 ∈ V ) | |
| 13 | 12 | imim2i | ⊢ ( ( 𝜑 → 𝑥 = 𝐴 ) → ( 𝜑 → 𝐴 ∈ V ) ) |
| 14 | 13 | con3rr3 | ⊢ ( ¬ 𝐴 ∈ V → ( ( 𝜑 → 𝑥 = 𝐴 ) → ¬ 𝜑 ) ) |
| 15 | 14 | alimdv | ⊢ ( ¬ 𝐴 ∈ V → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) → ∀ 𝑥 ¬ 𝜑 ) ) |
| 16 | alnex | ⊢ ( ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 ) | |
| 17 | nexmo | ⊢ ( ¬ ∃ 𝑥 𝜑 → ∃* 𝑥 𝜑 ) | |
| 18 | 16 17 | sylbi | ⊢ ( ∀ 𝑥 ¬ 𝜑 → ∃* 𝑥 𝜑 ) |
| 19 | 15 18 | syl6 | ⊢ ( ¬ 𝐴 ∈ V → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) → ∃* 𝑥 𝜑 ) ) |
| 20 | 11 19 | pm2.61i | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) → ∃* 𝑥 𝜑 ) |