This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of an image structure's scalar multiplication. (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasvscaf.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| imasvscaf.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| imasvscaf.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | ||
| imasvscaf.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | ||
| imasvscaf.g | ⊢ 𝐺 = ( Scalar ‘ 𝑅 ) | ||
| imasvscaf.k | ⊢ 𝐾 = ( Base ‘ 𝐺 ) | ||
| imasvscaf.q | ⊢ · = ( ·𝑠 ‘ 𝑅 ) | ||
| imasvscaf.s | ⊢ ∙ = ( ·𝑠 ‘ 𝑈 ) | ||
| imasvscaf.e | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑞 ) → ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) | ||
| Assertion | imasvscaval | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ∙ ( 𝐹 ‘ 𝑌 ) ) = ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasvscaf.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| 2 | imasvscaf.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | imasvscaf.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | |
| 4 | imasvscaf.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | |
| 5 | imasvscaf.g | ⊢ 𝐺 = ( Scalar ‘ 𝑅 ) | |
| 6 | imasvscaf.k | ⊢ 𝐾 = ( Base ‘ 𝐺 ) | |
| 7 | imasvscaf.q | ⊢ · = ( ·𝑠 ‘ 𝑅 ) | |
| 8 | imasvscaf.s | ⊢ ∙ = ( ·𝑠 ‘ 𝑈 ) | |
| 9 | imasvscaf.e | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑞 ) → ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) | |
| 10 | 1 2 3 4 5 6 7 8 9 | imasvscafn | ⊢ ( 𝜑 → ∙ Fn ( 𝐾 × 𝐵 ) ) |
| 11 | fnfun | ⊢ ( ∙ Fn ( 𝐾 × 𝐵 ) → Fun ∙ ) | |
| 12 | 10 11 | syl | ⊢ ( 𝜑 → Fun ∙ ) |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → Fun ∙ ) |
| 14 | eqidd | ⊢ ( 𝑞 = 𝑌 → 𝐾 = 𝐾 ) | |
| 15 | fveq2 | ⊢ ( 𝑞 = 𝑌 → ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑌 ) ) | |
| 16 | 15 | sneqd | ⊢ ( 𝑞 = 𝑌 → { ( 𝐹 ‘ 𝑞 ) } = { ( 𝐹 ‘ 𝑌 ) } ) |
| 17 | oveq2 | ⊢ ( 𝑞 = 𝑌 → ( 𝑝 · 𝑞 ) = ( 𝑝 · 𝑌 ) ) | |
| 18 | 17 | fveq2d | ⊢ ( 𝑞 = 𝑌 → ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑌 ) ) ) |
| 19 | 14 16 18 | mpoeq123dv | ⊢ ( 𝑞 = 𝑌 → ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) = ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑌 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑌 ) ) ) ) |
| 20 | 19 | ssiun2s | ⊢ ( 𝑌 ∈ 𝑉 → ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑌 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑌 ) ) ) ⊆ ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
| 21 | 20 | 3ad2ant3 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑌 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑌 ) ) ) ⊆ ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
| 22 | 1 2 3 4 5 6 7 8 | imasvsca | ⊢ ( 𝜑 → ∙ = ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
| 23 | 22 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ∙ = ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
| 24 | 21 23 | sseqtrrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑌 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑌 ) ) ) ⊆ ∙ ) |
| 25 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → 𝑋 ∈ 𝐾 ) | |
| 26 | fvex | ⊢ ( 𝐹 ‘ 𝑌 ) ∈ V | |
| 27 | 26 | snid | ⊢ ( 𝐹 ‘ 𝑌 ) ∈ { ( 𝐹 ‘ 𝑌 ) } |
| 28 | opelxpi | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑌 ) ∈ { ( 𝐹 ‘ 𝑌 ) } ) → 〈 𝑋 , ( 𝐹 ‘ 𝑌 ) 〉 ∈ ( 𝐾 × { ( 𝐹 ‘ 𝑌 ) } ) ) | |
| 29 | 25 27 28 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → 〈 𝑋 , ( 𝐹 ‘ 𝑌 ) 〉 ∈ ( 𝐾 × { ( 𝐹 ‘ 𝑌 ) } ) ) |
| 30 | eqid | ⊢ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑌 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑌 ) ) ) = ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑌 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑌 ) ) ) | |
| 31 | fvex | ⊢ ( 𝐹 ‘ ( 𝑝 · 𝑌 ) ) ∈ V | |
| 32 | 30 31 | dmmpo | ⊢ dom ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑌 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑌 ) ) ) = ( 𝐾 × { ( 𝐹 ‘ 𝑌 ) } ) |
| 33 | 29 32 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → 〈 𝑋 , ( 𝐹 ‘ 𝑌 ) 〉 ∈ dom ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑌 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑌 ) ) ) ) |
| 34 | funssfv | ⊢ ( ( Fun ∙ ∧ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑌 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑌 ) ) ) ⊆ ∙ ∧ 〈 𝑋 , ( 𝐹 ‘ 𝑌 ) 〉 ∈ dom ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑌 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑌 ) ) ) ) → ( ∙ ‘ 〈 𝑋 , ( 𝐹 ‘ 𝑌 ) 〉 ) = ( ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑌 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑌 ) ) ) ‘ 〈 𝑋 , ( 𝐹 ‘ 𝑌 ) 〉 ) ) | |
| 35 | 13 24 33 34 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( ∙ ‘ 〈 𝑋 , ( 𝐹 ‘ 𝑌 ) 〉 ) = ( ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑌 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑌 ) ) ) ‘ 〈 𝑋 , ( 𝐹 ‘ 𝑌 ) 〉 ) ) |
| 36 | df-ov | ⊢ ( 𝑋 ∙ ( 𝐹 ‘ 𝑌 ) ) = ( ∙ ‘ 〈 𝑋 , ( 𝐹 ‘ 𝑌 ) 〉 ) | |
| 37 | df-ov | ⊢ ( 𝑋 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑌 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑌 ) ) ) ( 𝐹 ‘ 𝑌 ) ) = ( ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑌 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑌 ) ) ) ‘ 〈 𝑋 , ( 𝐹 ‘ 𝑌 ) 〉 ) | |
| 38 | 35 36 37 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ∙ ( 𝐹 ‘ 𝑌 ) ) = ( 𝑋 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑌 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑌 ) ) ) ( 𝐹 ‘ 𝑌 ) ) ) |
| 39 | fvoveq1 | ⊢ ( 𝑝 = 𝑋 → ( 𝐹 ‘ ( 𝑝 · 𝑌 ) ) = ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) ) | |
| 40 | eqidd | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑌 ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) ) | |
| 41 | fvex | ⊢ ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) ∈ V | |
| 42 | 39 40 30 41 | ovmpo | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑌 ) ∈ { ( 𝐹 ‘ 𝑌 ) } ) → ( 𝑋 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑌 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑌 ) ) ) ( 𝐹 ‘ 𝑌 ) ) = ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) ) |
| 43 | 25 27 42 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑌 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑌 ) ) ) ( 𝐹 ‘ 𝑌 ) ) = ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) ) |
| 44 | 38 43 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ∙ ( 𝐹 ‘ 𝑌 ) ) = ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) ) |