This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The positive part of a simple function is simple. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | i1fpos.1 | ⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) | |
| Assertion | i1fpos | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐺 ∈ dom ∫1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fpos.1 | ⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) | |
| 2 | simpr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) | |
| 3 | 2 | biantrurd | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) ) ) |
| 4 | i1ff | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) | |
| 5 | 4 | ffvelcdmda | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 6 | 5 | biantrurd | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 7 | elrege0 | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 8 | 6 7 | bitr4di | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) ) |
| 9 | 4 | adantr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → 𝐹 : ℝ ⟶ ℝ ) |
| 10 | ffn | ⊢ ( 𝐹 : ℝ ⟶ ℝ → 𝐹 Fn ℝ ) | |
| 11 | elpreima | ⊢ ( 𝐹 Fn ℝ → ( 𝑥 ∈ ( ◡ 𝐹 “ ( 0 [,) +∞ ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) ) ) | |
| 12 | 9 10 11 | 3syl | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ( 0 [,) +∞ ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) ) ) |
| 13 | 3 8 12 | 3bitr4d | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ 𝑥 ∈ ( ◡ 𝐹 “ ( 0 [,) +∞ ) ) ) ) |
| 14 | 13 | ifbid | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) = if ( 𝑥 ∈ ( ◡ 𝐹 “ ( 0 [,) +∞ ) ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 15 | 14 | mpteq2dva | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( 0 [,) +∞ ) ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 16 | 1 15 | eqtrid | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( 0 [,) +∞ ) ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 17 | i1fima | ⊢ ( 𝐹 ∈ dom ∫1 → ( ◡ 𝐹 “ ( 0 [,) +∞ ) ) ∈ dom vol ) | |
| 18 | eqid | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( 0 [,) +∞ ) ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( 0 [,) +∞ ) ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) | |
| 19 | 18 | i1fres | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ( ◡ 𝐹 “ ( 0 [,) +∞ ) ) ∈ dom vol ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( 0 [,) +∞ ) ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ) |
| 20 | 17 19 | mpdan | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ◡ 𝐹 “ ( 0 [,) +∞ ) ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ) |
| 21 | 16 20 | eqeltrd | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐺 ∈ dom ∫1 ) |