This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set with size at least 2 has at least 2 different elements. (Contributed by AV, 18-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashge2el2dif | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝐷 = { 𝑥 } → ( ♯ ‘ 𝐷 ) = ( ♯ ‘ { 𝑥 } ) ) | |
| 2 | hashsng | ⊢ ( 𝑥 ∈ 𝐷 → ( ♯ ‘ { 𝑥 } ) = 1 ) | |
| 3 | 1 2 | sylan9eqr | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝐷 = { 𝑥 } ) → ( ♯ ‘ 𝐷 ) = 1 ) |
| 4 | 3 | ralimiaa | ⊢ ( ∀ 𝑥 ∈ 𝐷 𝐷 = { 𝑥 } → ∀ 𝑥 ∈ 𝐷 ( ♯ ‘ 𝐷 ) = 1 ) |
| 5 | 0re | ⊢ 0 ∈ ℝ | |
| 6 | 1re | ⊢ 1 ∈ ℝ | |
| 7 | 5 6 | readdcli | ⊢ ( 0 + 1 ) ∈ ℝ |
| 8 | 7 | a1i | ⊢ ( ( 𝐷 ∈ Fin ∧ ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) → ( 0 + 1 ) ∈ ℝ ) |
| 9 | 2re | ⊢ 2 ∈ ℝ | |
| 10 | 9 | a1i | ⊢ ( ( 𝐷 ∈ Fin ∧ ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) → 2 ∈ ℝ ) |
| 11 | hashcl | ⊢ ( 𝐷 ∈ Fin → ( ♯ ‘ 𝐷 ) ∈ ℕ0 ) | |
| 12 | 11 | nn0red | ⊢ ( 𝐷 ∈ Fin → ( ♯ ‘ 𝐷 ) ∈ ℝ ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐷 ∈ Fin ∧ ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) → ( ♯ ‘ 𝐷 ) ∈ ℝ ) |
| 14 | 8 10 13 | 3jca | ⊢ ( ( 𝐷 ∈ Fin ∧ ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) → ( ( 0 + 1 ) ∈ ℝ ∧ 2 ∈ ℝ ∧ ( ♯ ‘ 𝐷 ) ∈ ℝ ) ) |
| 15 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 16 | 1lt2 | ⊢ 1 < 2 | |
| 17 | 15 16 | eqbrtri | ⊢ ( 0 + 1 ) < 2 |
| 18 | 17 | jctl | ⊢ ( 2 ≤ ( ♯ ‘ 𝐷 ) → ( ( 0 + 1 ) < 2 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
| 19 | 18 | adantl | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ( ( 0 + 1 ) < 2 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
| 20 | 19 | adantl | ⊢ ( ( 𝐷 ∈ Fin ∧ ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) → ( ( 0 + 1 ) < 2 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
| 21 | ltleletr | ⊢ ( ( ( 0 + 1 ) ∈ ℝ ∧ 2 ∈ ℝ ∧ ( ♯ ‘ 𝐷 ) ∈ ℝ ) → ( ( ( 0 + 1 ) < 2 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ( 0 + 1 ) ≤ ( ♯ ‘ 𝐷 ) ) ) | |
| 22 | 14 20 21 | sylc | ⊢ ( ( 𝐷 ∈ Fin ∧ ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) → ( 0 + 1 ) ≤ ( ♯ ‘ 𝐷 ) ) |
| 23 | 11 | nn0zd | ⊢ ( 𝐷 ∈ Fin → ( ♯ ‘ 𝐷 ) ∈ ℤ ) |
| 24 | 0z | ⊢ 0 ∈ ℤ | |
| 25 | 23 24 | jctil | ⊢ ( 𝐷 ∈ Fin → ( 0 ∈ ℤ ∧ ( ♯ ‘ 𝐷 ) ∈ ℤ ) ) |
| 26 | 25 | adantr | ⊢ ( ( 𝐷 ∈ Fin ∧ ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) → ( 0 ∈ ℤ ∧ ( ♯ ‘ 𝐷 ) ∈ ℤ ) ) |
| 27 | zltp1le | ⊢ ( ( 0 ∈ ℤ ∧ ( ♯ ‘ 𝐷 ) ∈ ℤ ) → ( 0 < ( ♯ ‘ 𝐷 ) ↔ ( 0 + 1 ) ≤ ( ♯ ‘ 𝐷 ) ) ) | |
| 28 | 26 27 | syl | ⊢ ( ( 𝐷 ∈ Fin ∧ ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) → ( 0 < ( ♯ ‘ 𝐷 ) ↔ ( 0 + 1 ) ≤ ( ♯ ‘ 𝐷 ) ) ) |
| 29 | 22 28 | mpbird | ⊢ ( ( 𝐷 ∈ Fin ∧ ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) → 0 < ( ♯ ‘ 𝐷 ) ) |
| 30 | 0ltpnf | ⊢ 0 < +∞ | |
| 31 | simpl | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → 𝐷 ∈ 𝑉 ) | |
| 32 | 31 | anim2i | ⊢ ( ( ¬ 𝐷 ∈ Fin ∧ ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) → ( ¬ 𝐷 ∈ Fin ∧ 𝐷 ∈ 𝑉 ) ) |
| 33 | 32 | ancomd | ⊢ ( ( ¬ 𝐷 ∈ Fin ∧ ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) → ( 𝐷 ∈ 𝑉 ∧ ¬ 𝐷 ∈ Fin ) ) |
| 34 | hashinf | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ¬ 𝐷 ∈ Fin ) → ( ♯ ‘ 𝐷 ) = +∞ ) | |
| 35 | 33 34 | syl | ⊢ ( ( ¬ 𝐷 ∈ Fin ∧ ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) → ( ♯ ‘ 𝐷 ) = +∞ ) |
| 36 | 30 35 | breqtrrid | ⊢ ( ( ¬ 𝐷 ∈ Fin ∧ ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) ) → 0 < ( ♯ ‘ 𝐷 ) ) |
| 37 | 29 36 | pm2.61ian | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → 0 < ( ♯ ‘ 𝐷 ) ) |
| 38 | hashgt0n0 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 0 < ( ♯ ‘ 𝐷 ) ) → 𝐷 ≠ ∅ ) | |
| 39 | 37 38 | syldan | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → 𝐷 ≠ ∅ ) |
| 40 | rspn0 | ⊢ ( 𝐷 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐷 ( ♯ ‘ 𝐷 ) = 1 → ( ♯ ‘ 𝐷 ) = 1 ) ) | |
| 41 | 39 40 | syl | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ( ∀ 𝑥 ∈ 𝐷 ( ♯ ‘ 𝐷 ) = 1 → ( ♯ ‘ 𝐷 ) = 1 ) ) |
| 42 | breq2 | ⊢ ( ( ♯ ‘ 𝐷 ) = 1 → ( 2 ≤ ( ♯ ‘ 𝐷 ) ↔ 2 ≤ 1 ) ) | |
| 43 | 6 9 | ltnlei | ⊢ ( 1 < 2 ↔ ¬ 2 ≤ 1 ) |
| 44 | pm2.21 | ⊢ ( ¬ 2 ≤ 1 → ( 2 ≤ 1 → ¬ ∀ 𝑥 ∈ 𝐷 𝐷 = { 𝑥 } ) ) | |
| 45 | 43 44 | sylbi | ⊢ ( 1 < 2 → ( 2 ≤ 1 → ¬ ∀ 𝑥 ∈ 𝐷 𝐷 = { 𝑥 } ) ) |
| 46 | 16 45 | ax-mp | ⊢ ( 2 ≤ 1 → ¬ ∀ 𝑥 ∈ 𝐷 𝐷 = { 𝑥 } ) |
| 47 | 42 46 | biimtrdi | ⊢ ( ( ♯ ‘ 𝐷 ) = 1 → ( 2 ≤ ( ♯ ‘ 𝐷 ) → ¬ ∀ 𝑥 ∈ 𝐷 𝐷 = { 𝑥 } ) ) |
| 48 | 47 | com12 | ⊢ ( 2 ≤ ( ♯ ‘ 𝐷 ) → ( ( ♯ ‘ 𝐷 ) = 1 → ¬ ∀ 𝑥 ∈ 𝐷 𝐷 = { 𝑥 } ) ) |
| 49 | 48 | adantl | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ( ( ♯ ‘ 𝐷 ) = 1 → ¬ ∀ 𝑥 ∈ 𝐷 𝐷 = { 𝑥 } ) ) |
| 50 | 41 49 | syldc | ⊢ ( ∀ 𝑥 ∈ 𝐷 ( ♯ ‘ 𝐷 ) = 1 → ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ¬ ∀ 𝑥 ∈ 𝐷 𝐷 = { 𝑥 } ) ) |
| 51 | 4 50 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐷 𝐷 = { 𝑥 } → ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ¬ ∀ 𝑥 ∈ 𝐷 𝐷 = { 𝑥 } ) ) |
| 52 | ax-1 | ⊢ ( ¬ ∀ 𝑥 ∈ 𝐷 𝐷 = { 𝑥 } → ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ¬ ∀ 𝑥 ∈ 𝐷 𝐷 = { 𝑥 } ) ) | |
| 53 | 51 52 | pm2.61i | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ¬ ∀ 𝑥 ∈ 𝐷 𝐷 = { 𝑥 } ) |
| 54 | eqsn | ⊢ ( 𝐷 ≠ ∅ → ( 𝐷 = { 𝑥 } ↔ ∀ 𝑦 ∈ 𝐷 𝑦 = 𝑥 ) ) | |
| 55 | 39 54 | syl | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ( 𝐷 = { 𝑥 } ↔ ∀ 𝑦 ∈ 𝐷 𝑦 = 𝑥 ) ) |
| 56 | equcom | ⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) | |
| 57 | 56 | a1i | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) ) |
| 58 | 57 | ralbidv | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ( ∀ 𝑦 ∈ 𝐷 𝑦 = 𝑥 ↔ ∀ 𝑦 ∈ 𝐷 𝑥 = 𝑦 ) ) |
| 59 | 55 58 | bitrd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ( 𝐷 = { 𝑥 } ↔ ∀ 𝑦 ∈ 𝐷 𝑥 = 𝑦 ) ) |
| 60 | 59 | ralbidv | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ( ∀ 𝑥 ∈ 𝐷 𝐷 = { 𝑥 } ↔ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 𝑥 = 𝑦 ) ) |
| 61 | 53 60 | mtbid | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ¬ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 𝑥 = 𝑦 ) |
| 62 | df-ne | ⊢ ( 𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦 ) | |
| 63 | 62 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ↔ ∃ 𝑦 ∈ 𝐷 ¬ 𝑥 = 𝑦 ) |
| 64 | rexnal | ⊢ ( ∃ 𝑦 ∈ 𝐷 ¬ 𝑥 = 𝑦 ↔ ¬ ∀ 𝑦 ∈ 𝐷 𝑥 = 𝑦 ) | |
| 65 | 63 64 | bitri | ⊢ ( ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ↔ ¬ ∀ 𝑦 ∈ 𝐷 𝑥 = 𝑦 ) |
| 66 | 65 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ↔ ∃ 𝑥 ∈ 𝐷 ¬ ∀ 𝑦 ∈ 𝐷 𝑥 = 𝑦 ) |
| 67 | rexnal | ⊢ ( ∃ 𝑥 ∈ 𝐷 ¬ ∀ 𝑦 ∈ 𝐷 𝑥 = 𝑦 ↔ ¬ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 𝑥 = 𝑦 ) | |
| 68 | 66 67 | bitri | ⊢ ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ↔ ¬ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 𝑥 = 𝑦 ) |
| 69 | 61 68 | sylibr | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐷 ) ) → ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ) |