This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set with at least 2 different elements has size at least 2. (Contributed by AV, 14-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashge2el2difr | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ) → 2 ≤ ( ♯ ‘ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashv01gt1 | ⊢ ( 𝐷 ∈ 𝑉 → ( ( ♯ ‘ 𝐷 ) = 0 ∨ ( ♯ ‘ 𝐷 ) = 1 ∨ 1 < ( ♯ ‘ 𝐷 ) ) ) | |
| 2 | hasheq0 | ⊢ ( 𝐷 ∈ 𝑉 → ( ( ♯ ‘ 𝐷 ) = 0 ↔ 𝐷 = ∅ ) ) | |
| 3 | rexeq | ⊢ ( 𝐷 = ∅ → ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ↔ ∃ 𝑥 ∈ ∅ ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ) ) | |
| 4 | rex0 | ⊢ ¬ ∃ 𝑥 ∈ ∅ ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 | |
| 5 | pm2.21 | ⊢ ( ¬ ∃ 𝑥 ∈ ∅ ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → ( ∃ 𝑥 ∈ ∅ ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) | |
| 6 | 4 5 | mp1i | ⊢ ( 𝐷 = ∅ → ( ∃ 𝑥 ∈ ∅ ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
| 7 | 3 6 | sylbid | ⊢ ( 𝐷 = ∅ → ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
| 8 | 2 7 | biimtrdi | ⊢ ( 𝐷 ∈ 𝑉 → ( ( ♯ ‘ 𝐷 ) = 0 → ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) ) |
| 9 | 8 | com12 | ⊢ ( ( ♯ ‘ 𝐷 ) = 0 → ( 𝐷 ∈ 𝑉 → ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) ) |
| 10 | hash1snb | ⊢ ( 𝐷 ∈ 𝑉 → ( ( ♯ ‘ 𝐷 ) = 1 ↔ ∃ 𝑧 𝐷 = { 𝑧 } ) ) | |
| 11 | rexeq | ⊢ ( 𝐷 = { 𝑧 } → ( ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ↔ ∃ 𝑦 ∈ { 𝑧 } 𝑥 ≠ 𝑦 ) ) | |
| 12 | 11 | rexeqbi1dv | ⊢ ( 𝐷 = { 𝑧 } → ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ↔ ∃ 𝑥 ∈ { 𝑧 } ∃ 𝑦 ∈ { 𝑧 } 𝑥 ≠ 𝑦 ) ) |
| 13 | vex | ⊢ 𝑧 ∈ V | |
| 14 | neeq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≠ 𝑦 ↔ 𝑧 ≠ 𝑦 ) ) | |
| 15 | 14 | rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ { 𝑧 } 𝑥 ≠ 𝑦 ↔ ∃ 𝑦 ∈ { 𝑧 } 𝑧 ≠ 𝑦 ) ) |
| 16 | 13 15 | rexsn | ⊢ ( ∃ 𝑥 ∈ { 𝑧 } ∃ 𝑦 ∈ { 𝑧 } 𝑥 ≠ 𝑦 ↔ ∃ 𝑦 ∈ { 𝑧 } 𝑧 ≠ 𝑦 ) |
| 17 | neeq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑧 ≠ 𝑦 ↔ 𝑧 ≠ 𝑧 ) ) | |
| 18 | 13 17 | rexsn | ⊢ ( ∃ 𝑦 ∈ { 𝑧 } 𝑧 ≠ 𝑦 ↔ 𝑧 ≠ 𝑧 ) |
| 19 | 16 18 | bitri | ⊢ ( ∃ 𝑥 ∈ { 𝑧 } ∃ 𝑦 ∈ { 𝑧 } 𝑥 ≠ 𝑦 ↔ 𝑧 ≠ 𝑧 ) |
| 20 | 12 19 | bitrdi | ⊢ ( 𝐷 = { 𝑧 } → ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ↔ 𝑧 ≠ 𝑧 ) ) |
| 21 | equid | ⊢ 𝑧 = 𝑧 | |
| 22 | eqneqall | ⊢ ( 𝑧 = 𝑧 → ( 𝑧 ≠ 𝑧 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) | |
| 23 | 21 22 | mp1i | ⊢ ( 𝐷 = { 𝑧 } → ( 𝑧 ≠ 𝑧 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
| 24 | 20 23 | sylbid | ⊢ ( 𝐷 = { 𝑧 } → ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
| 25 | 24 | exlimiv | ⊢ ( ∃ 𝑧 𝐷 = { 𝑧 } → ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
| 26 | 10 25 | biimtrdi | ⊢ ( 𝐷 ∈ 𝑉 → ( ( ♯ ‘ 𝐷 ) = 1 → ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) ) |
| 27 | 26 | com12 | ⊢ ( ( ♯ ‘ 𝐷 ) = 1 → ( 𝐷 ∈ 𝑉 → ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) ) |
| 28 | hashnn0pnf | ⊢ ( 𝐷 ∈ 𝑉 → ( ( ♯ ‘ 𝐷 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝐷 ) = +∞ ) ) | |
| 29 | 1z | ⊢ 1 ∈ ℤ | |
| 30 | nn0z | ⊢ ( ( ♯ ‘ 𝐷 ) ∈ ℕ0 → ( ♯ ‘ 𝐷 ) ∈ ℤ ) | |
| 31 | zltp1le | ⊢ ( ( 1 ∈ ℤ ∧ ( ♯ ‘ 𝐷 ) ∈ ℤ ) → ( 1 < ( ♯ ‘ 𝐷 ) ↔ ( 1 + 1 ) ≤ ( ♯ ‘ 𝐷 ) ) ) | |
| 32 | 31 | biimpd | ⊢ ( ( 1 ∈ ℤ ∧ ( ♯ ‘ 𝐷 ) ∈ ℤ ) → ( 1 < ( ♯ ‘ 𝐷 ) → ( 1 + 1 ) ≤ ( ♯ ‘ 𝐷 ) ) ) |
| 33 | 29 30 32 | sylancr | ⊢ ( ( ♯ ‘ 𝐷 ) ∈ ℕ0 → ( 1 < ( ♯ ‘ 𝐷 ) → ( 1 + 1 ) ≤ ( ♯ ‘ 𝐷 ) ) ) |
| 34 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 35 | 34 | breq1i | ⊢ ( 2 ≤ ( ♯ ‘ 𝐷 ) ↔ ( 1 + 1 ) ≤ ( ♯ ‘ 𝐷 ) ) |
| 36 | 33 35 | imbitrrdi | ⊢ ( ( ♯ ‘ 𝐷 ) ∈ ℕ0 → ( 1 < ( ♯ ‘ 𝐷 ) → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
| 37 | 2re | ⊢ 2 ∈ ℝ | |
| 38 | 37 | rexri | ⊢ 2 ∈ ℝ* |
| 39 | pnfge | ⊢ ( 2 ∈ ℝ* → 2 ≤ +∞ ) | |
| 40 | 38 39 | mp1i | ⊢ ( ( ♯ ‘ 𝐷 ) = +∞ → 2 ≤ +∞ ) |
| 41 | breq2 | ⊢ ( ( ♯ ‘ 𝐷 ) = +∞ → ( 2 ≤ ( ♯ ‘ 𝐷 ) ↔ 2 ≤ +∞ ) ) | |
| 42 | 40 41 | mpbird | ⊢ ( ( ♯ ‘ 𝐷 ) = +∞ → 2 ≤ ( ♯ ‘ 𝐷 ) ) |
| 43 | 42 | a1d | ⊢ ( ( ♯ ‘ 𝐷 ) = +∞ → ( 1 < ( ♯ ‘ 𝐷 ) → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
| 44 | 36 43 | jaoi | ⊢ ( ( ( ♯ ‘ 𝐷 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝐷 ) = +∞ ) → ( 1 < ( ♯ ‘ 𝐷 ) → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
| 45 | 28 44 | syl | ⊢ ( 𝐷 ∈ 𝑉 → ( 1 < ( ♯ ‘ 𝐷 ) → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
| 46 | 45 | impcom | ⊢ ( ( 1 < ( ♯ ‘ 𝐷 ) ∧ 𝐷 ∈ 𝑉 ) → 2 ≤ ( ♯ ‘ 𝐷 ) ) |
| 47 | 46 | a1d | ⊢ ( ( 1 < ( ♯ ‘ 𝐷 ) ∧ 𝐷 ∈ 𝑉 ) → ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
| 48 | 47 | ex | ⊢ ( 1 < ( ♯ ‘ 𝐷 ) → ( 𝐷 ∈ 𝑉 → ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) ) |
| 49 | 9 27 48 | 3jaoi | ⊢ ( ( ( ♯ ‘ 𝐷 ) = 0 ∨ ( ♯ ‘ 𝐷 ) = 1 ∨ 1 < ( ♯ ‘ 𝐷 ) ) → ( 𝐷 ∈ 𝑉 → ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) ) |
| 50 | 1 49 | mpcom | ⊢ ( 𝐷 ∈ 𝑉 → ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ ( ♯ ‘ 𝐷 ) ) ) |
| 51 | 50 | imp | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ) → 2 ≤ ( ♯ ‘ 𝐷 ) ) |