This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The harmonic series H diverges. This fact follows from the stronger emcl , which establishes that the harmonic series grows as log n + gamma +o(1), but this uses a more elementary method, attributed to Nicole Oresme (1323-1382). This is Metamath 100 proof #34. (Contributed by Mario Carneiro, 11-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | harmonic.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) | |
| harmonic.2 | ⊢ 𝐻 = seq 1 ( + , 𝐹 ) | ||
| Assertion | harmonic | ⊢ ¬ 𝐻 ∈ dom ⇝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harmonic.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) | |
| 2 | harmonic.2 | ⊢ 𝐻 = seq 1 ( + , 𝐹 ) | |
| 3 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 4 | 0zd | ⊢ ( 𝐻 ∈ dom ⇝ → 0 ∈ ℤ ) | |
| 5 | 1ex | ⊢ 1 ∈ V | |
| 6 | 5 | fvconst2 | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ℕ0 × { 1 } ) ‘ 𝑘 ) = 1 ) |
| 7 | 6 | adantl | ⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ0 ) → ( ( ℕ0 × { 1 } ) ‘ 𝑘 ) = 1 ) |
| 8 | 1red | ⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ0 ) → 1 ∈ ℝ ) | |
| 9 | 2 | eleq1i | ⊢ ( 𝐻 ∈ dom ⇝ ↔ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 10 | 9 | biimpi | ⊢ ( 𝐻 ∈ dom ⇝ → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 11 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 1 / 𝑛 ) = ( 1 / 𝑘 ) ) | |
| 12 | ovex | ⊢ ( 1 / 𝑘 ) ∈ V | |
| 13 | 11 1 12 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ 𝑘 ) = ( 1 / 𝑘 ) ) |
| 14 | nnrecre | ⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ ) | |
| 15 | 13 14 | eqeltrd | ⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 16 | 15 | adantl | ⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 17 | nnrp | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ ) | |
| 18 | 17 | rpreccld | ⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ+ ) |
| 19 | 18 | rpge0d | ⊢ ( 𝑘 ∈ ℕ → 0 ≤ ( 1 / 𝑘 ) ) |
| 20 | 19 13 | breqtrrd | ⊢ ( 𝑘 ∈ ℕ → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 21 | 20 | adantl | ⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 22 | nnre | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) | |
| 23 | 22 | lep1d | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ≤ ( 𝑘 + 1 ) ) |
| 24 | nngt0 | ⊢ ( 𝑘 ∈ ℕ → 0 < 𝑘 ) | |
| 25 | peano2re | ⊢ ( 𝑘 ∈ ℝ → ( 𝑘 + 1 ) ∈ ℝ ) | |
| 26 | 22 25 | syl | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℝ ) |
| 27 | peano2nn | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) | |
| 28 | 27 | nngt0d | ⊢ ( 𝑘 ∈ ℕ → 0 < ( 𝑘 + 1 ) ) |
| 29 | lerec | ⊢ ( ( ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ∧ ( ( 𝑘 + 1 ) ∈ ℝ ∧ 0 < ( 𝑘 + 1 ) ) ) → ( 𝑘 ≤ ( 𝑘 + 1 ) ↔ ( 1 / ( 𝑘 + 1 ) ) ≤ ( 1 / 𝑘 ) ) ) | |
| 30 | 22 24 26 28 29 | syl22anc | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 ≤ ( 𝑘 + 1 ) ↔ ( 1 / ( 𝑘 + 1 ) ) ≤ ( 1 / 𝑘 ) ) ) |
| 31 | 23 30 | mpbid | ⊢ ( 𝑘 ∈ ℕ → ( 1 / ( 𝑘 + 1 ) ) ≤ ( 1 / 𝑘 ) ) |
| 32 | oveq2 | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 1 / 𝑛 ) = ( 1 / ( 𝑘 + 1 ) ) ) | |
| 33 | ovex | ⊢ ( 1 / ( 𝑘 + 1 ) ) ∈ V | |
| 34 | 32 1 33 | fvmpt | ⊢ ( ( 𝑘 + 1 ) ∈ ℕ → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 1 / ( 𝑘 + 1 ) ) ) |
| 35 | 27 34 | syl | ⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 1 / ( 𝑘 + 1 ) ) ) |
| 36 | 31 35 13 | 3brtr4d | ⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 37 | 36 | adantl | ⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 38 | oveq2 | ⊢ ( 𝑘 = 𝑗 → ( 2 ↑ 𝑘 ) = ( 2 ↑ 𝑗 ) ) | |
| 39 | 38 | fveq2d | ⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ ( 2 ↑ 𝑘 ) ) = ( 𝐹 ‘ ( 2 ↑ 𝑗 ) ) ) |
| 40 | 38 39 | oveq12d | ⊢ ( 𝑘 = 𝑗 → ( ( 2 ↑ 𝑘 ) · ( 𝐹 ‘ ( 2 ↑ 𝑘 ) ) ) = ( ( 2 ↑ 𝑗 ) · ( 𝐹 ‘ ( 2 ↑ 𝑗 ) ) ) ) |
| 41 | fconstmpt | ⊢ ( ℕ0 × { 1 } ) = ( 𝑘 ∈ ℕ0 ↦ 1 ) | |
| 42 | 2nn | ⊢ 2 ∈ ℕ | |
| 43 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ∈ ℕ ) | |
| 44 | 42 43 | mpan | ⊢ ( 𝑘 ∈ ℕ0 → ( 2 ↑ 𝑘 ) ∈ ℕ ) |
| 45 | oveq2 | ⊢ ( 𝑛 = ( 2 ↑ 𝑘 ) → ( 1 / 𝑛 ) = ( 1 / ( 2 ↑ 𝑘 ) ) ) | |
| 46 | ovex | ⊢ ( 1 / ( 2 ↑ 𝑘 ) ) ∈ V | |
| 47 | 45 1 46 | fvmpt | ⊢ ( ( 2 ↑ 𝑘 ) ∈ ℕ → ( 𝐹 ‘ ( 2 ↑ 𝑘 ) ) = ( 1 / ( 2 ↑ 𝑘 ) ) ) |
| 48 | 44 47 | syl | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝐹 ‘ ( 2 ↑ 𝑘 ) ) = ( 1 / ( 2 ↑ 𝑘 ) ) ) |
| 49 | 48 | oveq2d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 ↑ 𝑘 ) · ( 𝐹 ‘ ( 2 ↑ 𝑘 ) ) ) = ( ( 2 ↑ 𝑘 ) · ( 1 / ( 2 ↑ 𝑘 ) ) ) ) |
| 50 | nncn | ⊢ ( ( 2 ↑ 𝑘 ) ∈ ℕ → ( 2 ↑ 𝑘 ) ∈ ℂ ) | |
| 51 | nnne0 | ⊢ ( ( 2 ↑ 𝑘 ) ∈ ℕ → ( 2 ↑ 𝑘 ) ≠ 0 ) | |
| 52 | 50 51 | recidd | ⊢ ( ( 2 ↑ 𝑘 ) ∈ ℕ → ( ( 2 ↑ 𝑘 ) · ( 1 / ( 2 ↑ 𝑘 ) ) ) = 1 ) |
| 53 | 44 52 | syl | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 ↑ 𝑘 ) · ( 1 / ( 2 ↑ 𝑘 ) ) ) = 1 ) |
| 54 | 49 53 | eqtrd | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 ↑ 𝑘 ) · ( 𝐹 ‘ ( 2 ↑ 𝑘 ) ) ) = 1 ) |
| 55 | 54 | mpteq2ia | ⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑘 ) · ( 𝐹 ‘ ( 2 ↑ 𝑘 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ 1 ) |
| 56 | 41 55 | eqtr4i | ⊢ ( ℕ0 × { 1 } ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑘 ) · ( 𝐹 ‘ ( 2 ↑ 𝑘 ) ) ) ) |
| 57 | ovex | ⊢ ( ( 2 ↑ 𝑗 ) · ( 𝐹 ‘ ( 2 ↑ 𝑗 ) ) ) ∈ V | |
| 58 | 40 56 57 | fvmpt | ⊢ ( 𝑗 ∈ ℕ0 → ( ( ℕ0 × { 1 } ) ‘ 𝑗 ) = ( ( 2 ↑ 𝑗 ) · ( 𝐹 ‘ ( 2 ↑ 𝑗 ) ) ) ) |
| 59 | 58 | adantl | ⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ0 ) → ( ( ℕ0 × { 1 } ) ‘ 𝑗 ) = ( ( 2 ↑ 𝑗 ) · ( 𝐹 ‘ ( 2 ↑ 𝑗 ) ) ) ) |
| 60 | 16 21 37 59 | climcnds | ⊢ ( 𝐻 ∈ dom ⇝ → ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 0 ( + , ( ℕ0 × { 1 } ) ) ∈ dom ⇝ ) ) |
| 61 | 10 60 | mpbid | ⊢ ( 𝐻 ∈ dom ⇝ → seq 0 ( + , ( ℕ0 × { 1 } ) ) ∈ dom ⇝ ) |
| 62 | 3 4 7 8 61 | isumrecl | ⊢ ( 𝐻 ∈ dom ⇝ → Σ 𝑘 ∈ ℕ0 1 ∈ ℝ ) |
| 63 | arch | ⊢ ( Σ 𝑘 ∈ ℕ0 1 ∈ ℝ → ∃ 𝑗 ∈ ℕ Σ 𝑘 ∈ ℕ0 1 < 𝑗 ) | |
| 64 | 62 63 | syl | ⊢ ( 𝐻 ∈ dom ⇝ → ∃ 𝑗 ∈ ℕ Σ 𝑘 ∈ ℕ0 1 < 𝑗 ) |
| 65 | fzfid | ⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → ( 1 ... 𝑗 ) ∈ Fin ) | |
| 66 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 67 | fsumconst | ⊢ ( ( ( 1 ... 𝑗 ) ∈ Fin ∧ 1 ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... 𝑗 ) 1 = ( ( ♯ ‘ ( 1 ... 𝑗 ) ) · 1 ) ) | |
| 68 | 65 66 67 | sylancl | ⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑗 ) 1 = ( ( ♯ ‘ ( 1 ... 𝑗 ) ) · 1 ) ) |
| 69 | nnnn0 | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℕ0 ) | |
| 70 | 69 | adantl | ⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ0 ) |
| 71 | hashfz1 | ⊢ ( 𝑗 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑗 ) ) = 𝑗 ) | |
| 72 | 70 71 | syl | ⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → ( ♯ ‘ ( 1 ... 𝑗 ) ) = 𝑗 ) |
| 73 | 72 | oveq1d | ⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → ( ( ♯ ‘ ( 1 ... 𝑗 ) ) · 1 ) = ( 𝑗 · 1 ) ) |
| 74 | nncn | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℂ ) | |
| 75 | 74 | adantl | ⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℂ ) |
| 76 | 75 | mulridd | ⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → ( 𝑗 · 1 ) = 𝑗 ) |
| 77 | 68 73 76 | 3eqtrd | ⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑗 ) 1 = 𝑗 ) |
| 78 | 0zd | ⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → 0 ∈ ℤ ) | |
| 79 | elfznn | ⊢ ( 𝑘 ∈ ( 1 ... 𝑗 ) → 𝑘 ∈ ℕ ) | |
| 80 | nnnn0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) | |
| 81 | 79 80 | syl | ⊢ ( 𝑘 ∈ ( 1 ... 𝑗 ) → 𝑘 ∈ ℕ0 ) |
| 82 | 81 | ssriv | ⊢ ( 1 ... 𝑗 ) ⊆ ℕ0 |
| 83 | 82 | a1i | ⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → ( 1 ... 𝑗 ) ⊆ ℕ0 ) |
| 84 | 6 | adantl | ⊢ ( ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ℕ0 × { 1 } ) ‘ 𝑘 ) = 1 ) |
| 85 | 1red | ⊢ ( ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) → 1 ∈ ℝ ) | |
| 86 | 0le1 | ⊢ 0 ≤ 1 | |
| 87 | 86 | a1i | ⊢ ( ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ 1 ) |
| 88 | 61 | adantr | ⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → seq 0 ( + , ( ℕ0 × { 1 } ) ) ∈ dom ⇝ ) |
| 89 | 3 78 65 83 84 85 87 88 | isumless | ⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑗 ) 1 ≤ Σ 𝑘 ∈ ℕ0 1 ) |
| 90 | 77 89 | eqbrtrrd | ⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → 𝑗 ≤ Σ 𝑘 ∈ ℕ0 1 ) |
| 91 | nnre | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℝ ) | |
| 92 | lenlt | ⊢ ( ( 𝑗 ∈ ℝ ∧ Σ 𝑘 ∈ ℕ0 1 ∈ ℝ ) → ( 𝑗 ≤ Σ 𝑘 ∈ ℕ0 1 ↔ ¬ Σ 𝑘 ∈ ℕ0 1 < 𝑗 ) ) | |
| 93 | 91 62 92 | syl2anr | ⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → ( 𝑗 ≤ Σ 𝑘 ∈ ℕ0 1 ↔ ¬ Σ 𝑘 ∈ ℕ0 1 < 𝑗 ) ) |
| 94 | 90 93 | mpbid | ⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → ¬ Σ 𝑘 ∈ ℕ0 1 < 𝑗 ) |
| 95 | 94 | nrexdv | ⊢ ( 𝐻 ∈ dom ⇝ → ¬ ∃ 𝑗 ∈ ℕ Σ 𝑘 ∈ ℕ0 1 < 𝑗 ) |
| 96 | 64 95 | pm2.65i | ⊢ ¬ 𝐻 ∈ dom ⇝ |