This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The harmonic series H diverges. This fact follows from the stronger emcl , which establishes that the harmonic series grows as log n + gamma +o(1), but this uses a more elementary method, attributed to Nicole Oresme (1323-1382). This is Metamath 100 proof #34. (Contributed by Mario Carneiro, 11-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | harmonic.1 | |- F = ( n e. NN |-> ( 1 / n ) ) |
|
| harmonic.2 | |- H = seq 1 ( + , F ) |
||
| Assertion | harmonic | |- -. H e. dom ~~> |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harmonic.1 | |- F = ( n e. NN |-> ( 1 / n ) ) |
|
| 2 | harmonic.2 | |- H = seq 1 ( + , F ) |
|
| 3 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 4 | 0zd | |- ( H e. dom ~~> -> 0 e. ZZ ) |
|
| 5 | 1ex | |- 1 e. _V |
|
| 6 | 5 | fvconst2 | |- ( k e. NN0 -> ( ( NN0 X. { 1 } ) ` k ) = 1 ) |
| 7 | 6 | adantl | |- ( ( H e. dom ~~> /\ k e. NN0 ) -> ( ( NN0 X. { 1 } ) ` k ) = 1 ) |
| 8 | 1red | |- ( ( H e. dom ~~> /\ k e. NN0 ) -> 1 e. RR ) |
|
| 9 | 2 | eleq1i | |- ( H e. dom ~~> <-> seq 1 ( + , F ) e. dom ~~> ) |
| 10 | 9 | biimpi | |- ( H e. dom ~~> -> seq 1 ( + , F ) e. dom ~~> ) |
| 11 | oveq2 | |- ( n = k -> ( 1 / n ) = ( 1 / k ) ) |
|
| 12 | ovex | |- ( 1 / k ) e. _V |
|
| 13 | 11 1 12 | fvmpt | |- ( k e. NN -> ( F ` k ) = ( 1 / k ) ) |
| 14 | nnrecre | |- ( k e. NN -> ( 1 / k ) e. RR ) |
|
| 15 | 13 14 | eqeltrd | |- ( k e. NN -> ( F ` k ) e. RR ) |
| 16 | 15 | adantl | |- ( ( H e. dom ~~> /\ k e. NN ) -> ( F ` k ) e. RR ) |
| 17 | nnrp | |- ( k e. NN -> k e. RR+ ) |
|
| 18 | 17 | rpreccld | |- ( k e. NN -> ( 1 / k ) e. RR+ ) |
| 19 | 18 | rpge0d | |- ( k e. NN -> 0 <_ ( 1 / k ) ) |
| 20 | 19 13 | breqtrrd | |- ( k e. NN -> 0 <_ ( F ` k ) ) |
| 21 | 20 | adantl | |- ( ( H e. dom ~~> /\ k e. NN ) -> 0 <_ ( F ` k ) ) |
| 22 | nnre | |- ( k e. NN -> k e. RR ) |
|
| 23 | 22 | lep1d | |- ( k e. NN -> k <_ ( k + 1 ) ) |
| 24 | nngt0 | |- ( k e. NN -> 0 < k ) |
|
| 25 | peano2re | |- ( k e. RR -> ( k + 1 ) e. RR ) |
|
| 26 | 22 25 | syl | |- ( k e. NN -> ( k + 1 ) e. RR ) |
| 27 | peano2nn | |- ( k e. NN -> ( k + 1 ) e. NN ) |
|
| 28 | 27 | nngt0d | |- ( k e. NN -> 0 < ( k + 1 ) ) |
| 29 | lerec | |- ( ( ( k e. RR /\ 0 < k ) /\ ( ( k + 1 ) e. RR /\ 0 < ( k + 1 ) ) ) -> ( k <_ ( k + 1 ) <-> ( 1 / ( k + 1 ) ) <_ ( 1 / k ) ) ) |
|
| 30 | 22 24 26 28 29 | syl22anc | |- ( k e. NN -> ( k <_ ( k + 1 ) <-> ( 1 / ( k + 1 ) ) <_ ( 1 / k ) ) ) |
| 31 | 23 30 | mpbid | |- ( k e. NN -> ( 1 / ( k + 1 ) ) <_ ( 1 / k ) ) |
| 32 | oveq2 | |- ( n = ( k + 1 ) -> ( 1 / n ) = ( 1 / ( k + 1 ) ) ) |
|
| 33 | ovex | |- ( 1 / ( k + 1 ) ) e. _V |
|
| 34 | 32 1 33 | fvmpt | |- ( ( k + 1 ) e. NN -> ( F ` ( k + 1 ) ) = ( 1 / ( k + 1 ) ) ) |
| 35 | 27 34 | syl | |- ( k e. NN -> ( F ` ( k + 1 ) ) = ( 1 / ( k + 1 ) ) ) |
| 36 | 31 35 13 | 3brtr4d | |- ( k e. NN -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
| 37 | 36 | adantl | |- ( ( H e. dom ~~> /\ k e. NN ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
| 38 | oveq2 | |- ( k = j -> ( 2 ^ k ) = ( 2 ^ j ) ) |
|
| 39 | 38 | fveq2d | |- ( k = j -> ( F ` ( 2 ^ k ) ) = ( F ` ( 2 ^ j ) ) ) |
| 40 | 38 39 | oveq12d | |- ( k = j -> ( ( 2 ^ k ) x. ( F ` ( 2 ^ k ) ) ) = ( ( 2 ^ j ) x. ( F ` ( 2 ^ j ) ) ) ) |
| 41 | fconstmpt | |- ( NN0 X. { 1 } ) = ( k e. NN0 |-> 1 ) |
|
| 42 | 2nn | |- 2 e. NN |
|
| 43 | nnexpcl | |- ( ( 2 e. NN /\ k e. NN0 ) -> ( 2 ^ k ) e. NN ) |
|
| 44 | 42 43 | mpan | |- ( k e. NN0 -> ( 2 ^ k ) e. NN ) |
| 45 | oveq2 | |- ( n = ( 2 ^ k ) -> ( 1 / n ) = ( 1 / ( 2 ^ k ) ) ) |
|
| 46 | ovex | |- ( 1 / ( 2 ^ k ) ) e. _V |
|
| 47 | 45 1 46 | fvmpt | |- ( ( 2 ^ k ) e. NN -> ( F ` ( 2 ^ k ) ) = ( 1 / ( 2 ^ k ) ) ) |
| 48 | 44 47 | syl | |- ( k e. NN0 -> ( F ` ( 2 ^ k ) ) = ( 1 / ( 2 ^ k ) ) ) |
| 49 | 48 | oveq2d | |- ( k e. NN0 -> ( ( 2 ^ k ) x. ( F ` ( 2 ^ k ) ) ) = ( ( 2 ^ k ) x. ( 1 / ( 2 ^ k ) ) ) ) |
| 50 | nncn | |- ( ( 2 ^ k ) e. NN -> ( 2 ^ k ) e. CC ) |
|
| 51 | nnne0 | |- ( ( 2 ^ k ) e. NN -> ( 2 ^ k ) =/= 0 ) |
|
| 52 | 50 51 | recidd | |- ( ( 2 ^ k ) e. NN -> ( ( 2 ^ k ) x. ( 1 / ( 2 ^ k ) ) ) = 1 ) |
| 53 | 44 52 | syl | |- ( k e. NN0 -> ( ( 2 ^ k ) x. ( 1 / ( 2 ^ k ) ) ) = 1 ) |
| 54 | 49 53 | eqtrd | |- ( k e. NN0 -> ( ( 2 ^ k ) x. ( F ` ( 2 ^ k ) ) ) = 1 ) |
| 55 | 54 | mpteq2ia | |- ( k e. NN0 |-> ( ( 2 ^ k ) x. ( F ` ( 2 ^ k ) ) ) ) = ( k e. NN0 |-> 1 ) |
| 56 | 41 55 | eqtr4i | |- ( NN0 X. { 1 } ) = ( k e. NN0 |-> ( ( 2 ^ k ) x. ( F ` ( 2 ^ k ) ) ) ) |
| 57 | ovex | |- ( ( 2 ^ j ) x. ( F ` ( 2 ^ j ) ) ) e. _V |
|
| 58 | 40 56 57 | fvmpt | |- ( j e. NN0 -> ( ( NN0 X. { 1 } ) ` j ) = ( ( 2 ^ j ) x. ( F ` ( 2 ^ j ) ) ) ) |
| 59 | 58 | adantl | |- ( ( H e. dom ~~> /\ j e. NN0 ) -> ( ( NN0 X. { 1 } ) ` j ) = ( ( 2 ^ j ) x. ( F ` ( 2 ^ j ) ) ) ) |
| 60 | 16 21 37 59 | climcnds | |- ( H e. dom ~~> -> ( seq 1 ( + , F ) e. dom ~~> <-> seq 0 ( + , ( NN0 X. { 1 } ) ) e. dom ~~> ) ) |
| 61 | 10 60 | mpbid | |- ( H e. dom ~~> -> seq 0 ( + , ( NN0 X. { 1 } ) ) e. dom ~~> ) |
| 62 | 3 4 7 8 61 | isumrecl | |- ( H e. dom ~~> -> sum_ k e. NN0 1 e. RR ) |
| 63 | arch | |- ( sum_ k e. NN0 1 e. RR -> E. j e. NN sum_ k e. NN0 1 < j ) |
|
| 64 | 62 63 | syl | |- ( H e. dom ~~> -> E. j e. NN sum_ k e. NN0 1 < j ) |
| 65 | fzfid | |- ( ( H e. dom ~~> /\ j e. NN ) -> ( 1 ... j ) e. Fin ) |
|
| 66 | ax-1cn | |- 1 e. CC |
|
| 67 | fsumconst | |- ( ( ( 1 ... j ) e. Fin /\ 1 e. CC ) -> sum_ k e. ( 1 ... j ) 1 = ( ( # ` ( 1 ... j ) ) x. 1 ) ) |
|
| 68 | 65 66 67 | sylancl | |- ( ( H e. dom ~~> /\ j e. NN ) -> sum_ k e. ( 1 ... j ) 1 = ( ( # ` ( 1 ... j ) ) x. 1 ) ) |
| 69 | nnnn0 | |- ( j e. NN -> j e. NN0 ) |
|
| 70 | 69 | adantl | |- ( ( H e. dom ~~> /\ j e. NN ) -> j e. NN0 ) |
| 71 | hashfz1 | |- ( j e. NN0 -> ( # ` ( 1 ... j ) ) = j ) |
|
| 72 | 70 71 | syl | |- ( ( H e. dom ~~> /\ j e. NN ) -> ( # ` ( 1 ... j ) ) = j ) |
| 73 | 72 | oveq1d | |- ( ( H e. dom ~~> /\ j e. NN ) -> ( ( # ` ( 1 ... j ) ) x. 1 ) = ( j x. 1 ) ) |
| 74 | nncn | |- ( j e. NN -> j e. CC ) |
|
| 75 | 74 | adantl | |- ( ( H e. dom ~~> /\ j e. NN ) -> j e. CC ) |
| 76 | 75 | mulridd | |- ( ( H e. dom ~~> /\ j e. NN ) -> ( j x. 1 ) = j ) |
| 77 | 68 73 76 | 3eqtrd | |- ( ( H e. dom ~~> /\ j e. NN ) -> sum_ k e. ( 1 ... j ) 1 = j ) |
| 78 | 0zd | |- ( ( H e. dom ~~> /\ j e. NN ) -> 0 e. ZZ ) |
|
| 79 | elfznn | |- ( k e. ( 1 ... j ) -> k e. NN ) |
|
| 80 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 81 | 79 80 | syl | |- ( k e. ( 1 ... j ) -> k e. NN0 ) |
| 82 | 81 | ssriv | |- ( 1 ... j ) C_ NN0 |
| 83 | 82 | a1i | |- ( ( H e. dom ~~> /\ j e. NN ) -> ( 1 ... j ) C_ NN0 ) |
| 84 | 6 | adantl | |- ( ( ( H e. dom ~~> /\ j e. NN ) /\ k e. NN0 ) -> ( ( NN0 X. { 1 } ) ` k ) = 1 ) |
| 85 | 1red | |- ( ( ( H e. dom ~~> /\ j e. NN ) /\ k e. NN0 ) -> 1 e. RR ) |
|
| 86 | 0le1 | |- 0 <_ 1 |
|
| 87 | 86 | a1i | |- ( ( ( H e. dom ~~> /\ j e. NN ) /\ k e. NN0 ) -> 0 <_ 1 ) |
| 88 | 61 | adantr | |- ( ( H e. dom ~~> /\ j e. NN ) -> seq 0 ( + , ( NN0 X. { 1 } ) ) e. dom ~~> ) |
| 89 | 3 78 65 83 84 85 87 88 | isumless | |- ( ( H e. dom ~~> /\ j e. NN ) -> sum_ k e. ( 1 ... j ) 1 <_ sum_ k e. NN0 1 ) |
| 90 | 77 89 | eqbrtrrd | |- ( ( H e. dom ~~> /\ j e. NN ) -> j <_ sum_ k e. NN0 1 ) |
| 91 | nnre | |- ( j e. NN -> j e. RR ) |
|
| 92 | lenlt | |- ( ( j e. RR /\ sum_ k e. NN0 1 e. RR ) -> ( j <_ sum_ k e. NN0 1 <-> -. sum_ k e. NN0 1 < j ) ) |
|
| 93 | 91 62 92 | syl2anr | |- ( ( H e. dom ~~> /\ j e. NN ) -> ( j <_ sum_ k e. NN0 1 <-> -. sum_ k e. NN0 1 < j ) ) |
| 94 | 90 93 | mpbid | |- ( ( H e. dom ~~> /\ j e. NN ) -> -. sum_ k e. NN0 1 < j ) |
| 95 | 94 | nrexdv | |- ( H e. dom ~~> -> -. E. j e. NN sum_ k e. NN0 1 < j ) |
| 96 | 64 95 | pm2.65i | |- -. H e. dom ~~> |