This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of a function which maps the zero to zero with a finitely supported function is finitely supported. This is not only a special case of fsuppcor because it does not require that the "zero" is an element of the range of the finitely supported function. (Contributed by AV, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsuppco2.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) | |
| fsuppco2.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| fsuppco2.g | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐵 ) | ||
| fsuppco2.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | ||
| fsuppco2.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| fsuppco2.n | ⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) | ||
| fsuppco2.i | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑍 ) = 𝑍 ) | ||
| Assertion | fsuppco2 | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) finSupp 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppco2.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) | |
| 2 | fsuppco2.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 3 | fsuppco2.g | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐵 ) | |
| 4 | fsuppco2.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | |
| 5 | fsuppco2.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 6 | fsuppco2.n | ⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) | |
| 7 | fsuppco2.i | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑍 ) = 𝑍 ) | |
| 8 | 3 | ffund | ⊢ ( 𝜑 → Fun 𝐺 ) |
| 9 | 2 | ffund | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 10 | funco | ⊢ ( ( Fun 𝐺 ∧ Fun 𝐹 ) → Fun ( 𝐺 ∘ 𝐹 ) ) | |
| 11 | 8 9 10 | syl2anc | ⊢ ( 𝜑 → Fun ( 𝐺 ∘ 𝐹 ) ) |
| 12 | 6 | fsuppimpd | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ∈ Fin ) |
| 13 | fco | ⊢ ( ( 𝐺 : 𝐵 ⟶ 𝐵 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ 𝐵 ) | |
| 14 | 3 2 13 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ 𝐵 ) |
| 15 | eldifi | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) → 𝑥 ∈ 𝐴 ) | |
| 16 | fvco3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 17 | 2 15 16 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 18 | ssidd | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) | |
| 19 | 2 18 4 1 | suppssr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) |
| 20 | 19 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑍 ) ) |
| 21 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) → ( 𝐺 ‘ 𝑍 ) = 𝑍 ) |
| 22 | 17 20 21 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = 𝑍 ) |
| 23 | 14 22 | suppss | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) |
| 24 | 12 23 | ssfid | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) supp 𝑍 ) ∈ Fin ) |
| 25 | 3 5 | fexd | ⊢ ( 𝜑 → 𝐺 ∈ V ) |
| 26 | 2 4 | fexd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 27 | coexg | ⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ) → ( 𝐺 ∘ 𝐹 ) ∈ V ) | |
| 28 | 25 26 27 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) ∈ V ) |
| 29 | isfsupp | ⊢ ( ( ( 𝐺 ∘ 𝐹 ) ∈ V ∧ 𝑍 ∈ 𝑊 ) → ( ( 𝐺 ∘ 𝐹 ) finSupp 𝑍 ↔ ( Fun ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) supp 𝑍 ) ∈ Fin ) ) ) | |
| 30 | 28 1 29 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) finSupp 𝑍 ↔ ( Fun ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) supp 𝑍 ) ∈ Fin ) ) ) |
| 31 | 11 24 30 | mpbir2and | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) finSupp 𝑍 ) |