This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inverse of a group sum. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by Mario Carneiro, 4-May-2015) (Revised by AV, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsuminv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsuminv.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsuminv.p | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| gsuminv.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | ||
| gsuminv.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsuminv.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| gsuminv.n | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | ||
| Assertion | gsuminv | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐼 ∘ 𝐹 ) ) = ( 𝐼 ‘ ( 𝐺 Σg 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsuminv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsuminv.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsuminv.p | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 4 | gsuminv.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | |
| 5 | gsuminv.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | gsuminv.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 7 | gsuminv.n | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | |
| 8 | ablcmn | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ CMnd ) | |
| 9 | 4 8 | syl | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 10 | cmnmnd | ⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) | |
| 11 | 9 10 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 12 | 1 3 | invghm | ⊢ ( 𝐺 ∈ Abel ↔ 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ) |
| 13 | 4 12 | sylib | ⊢ ( 𝜑 → 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ) |
| 14 | ghmmhm | ⊢ ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) → 𝐼 ∈ ( 𝐺 MndHom 𝐺 ) ) | |
| 15 | 13 14 | syl | ⊢ ( 𝜑 → 𝐼 ∈ ( 𝐺 MndHom 𝐺 ) ) |
| 16 | 1 2 9 11 5 15 6 7 | gsummhm | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐼 ∘ 𝐹 ) ) = ( 𝐼 ‘ ( 𝐺 Σg 𝐹 ) ) ) |