This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse is an antiautomorphism on any group. (Contributed by Stefan O'Rear, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invoppggim.o | ⊢ 𝑂 = ( oppg ‘ 𝐺 ) | |
| invoppggim.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| Assertion | invoppggim | ⊢ ( 𝐺 ∈ Grp → 𝐼 ∈ ( 𝐺 GrpIso 𝑂 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invoppggim.o | ⊢ 𝑂 = ( oppg ‘ 𝐺 ) | |
| 2 | invoppggim.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 4 | 1 3 | oppgbas | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝑂 ) |
| 5 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 6 | eqid | ⊢ ( +g ‘ 𝑂 ) = ( +g ‘ 𝑂 ) | |
| 7 | id | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Grp ) | |
| 8 | 1 | oppggrp | ⊢ ( 𝐺 ∈ Grp → 𝑂 ∈ Grp ) |
| 9 | 3 2 | grpinvf | ⊢ ( 𝐺 ∈ Grp → 𝐼 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ) |
| 10 | 3 5 2 | grpinvadd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐼 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐼 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑥 ) ) ) |
| 11 | 10 | 3expb | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝐼 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐼 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑥 ) ) ) |
| 12 | 5 1 6 | oppgplus | ⊢ ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝑂 ) ( 𝐼 ‘ 𝑦 ) ) = ( ( 𝐼 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑥 ) ) |
| 13 | 11 12 | eqtr4di | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝐼 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝑂 ) ( 𝐼 ‘ 𝑦 ) ) ) |
| 14 | 3 4 5 6 7 8 9 13 | isghmd | ⊢ ( 𝐺 ∈ Grp → 𝐼 ∈ ( 𝐺 GrpHom 𝑂 ) ) |
| 15 | 3 2 7 | grpinvf1o | ⊢ ( 𝐺 ∈ Grp → 𝐼 : ( Base ‘ 𝐺 ) –1-1-onto→ ( Base ‘ 𝐺 ) ) |
| 16 | 3 4 | isgim | ⊢ ( 𝐼 ∈ ( 𝐺 GrpIso 𝑂 ) ↔ ( 𝐼 ∈ ( 𝐺 GrpHom 𝑂 ) ∧ 𝐼 : ( Base ‘ 𝐺 ) –1-1-onto→ ( Base ‘ 𝐺 ) ) ) |
| 17 | 14 15 16 | sylanbrc | ⊢ ( 𝐺 ∈ Grp → 𝐼 ∈ ( 𝐺 GrpIso 𝑂 ) ) |