This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The submonoid generated by a set of elements is precisely the set of elements which can be expressed as finite products of the generator. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumwspan.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| gsumwspan.k | ⊢ 𝐾 = ( mrCls ‘ ( SubMnd ‘ 𝑀 ) ) | ||
| Assertion | gsumwspan | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) → ( 𝐾 ‘ 𝐺 ) = ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumwspan.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | gsumwspan.k | ⊢ 𝐾 = ( mrCls ‘ ( SubMnd ‘ 𝑀 ) ) | |
| 3 | 1 | submacs | ⊢ ( 𝑀 ∈ Mnd → ( SubMnd ‘ 𝑀 ) ∈ ( ACS ‘ 𝐵 ) ) |
| 4 | 3 | acsmred | ⊢ ( 𝑀 ∈ Mnd → ( SubMnd ‘ 𝑀 ) ∈ ( Moore ‘ 𝐵 ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) → ( SubMnd ‘ 𝑀 ) ∈ ( Moore ‘ 𝐵 ) ) |
| 6 | simpr | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐺 ) → 𝑥 ∈ 𝐺 ) | |
| 7 | 6 | s1cld | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐺 ) → 〈“ 𝑥 ”〉 ∈ Word 𝐺 ) |
| 8 | ssel2 | ⊢ ( ( 𝐺 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐺 ) → 𝑥 ∈ 𝐵 ) | |
| 9 | 8 | adantll | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐺 ) → 𝑥 ∈ 𝐵 ) |
| 10 | 1 | gsumws1 | ⊢ ( 𝑥 ∈ 𝐵 → ( 𝑀 Σg 〈“ 𝑥 ”〉 ) = 𝑥 ) |
| 11 | 9 10 | syl | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐺 ) → ( 𝑀 Σg 〈“ 𝑥 ”〉 ) = 𝑥 ) |
| 12 | 11 | eqcomd | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐺 ) → 𝑥 = ( 𝑀 Σg 〈“ 𝑥 ”〉 ) ) |
| 13 | oveq2 | ⊢ ( 𝑤 = 〈“ 𝑥 ”〉 → ( 𝑀 Σg 𝑤 ) = ( 𝑀 Σg 〈“ 𝑥 ”〉 ) ) | |
| 14 | 13 | rspceeqv | ⊢ ( ( 〈“ 𝑥 ”〉 ∈ Word 𝐺 ∧ 𝑥 = ( 𝑀 Σg 〈“ 𝑥 ”〉 ) ) → ∃ 𝑤 ∈ Word 𝐺 𝑥 = ( 𝑀 Σg 𝑤 ) ) |
| 15 | 7 12 14 | syl2anc | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐺 ) → ∃ 𝑤 ∈ Word 𝐺 𝑥 = ( 𝑀 Σg 𝑤 ) ) |
| 16 | eqid | ⊢ ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) = ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) | |
| 17 | 16 | elrnmpt | ⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ↔ ∃ 𝑤 ∈ Word 𝐺 𝑥 = ( 𝑀 Σg 𝑤 ) ) ) |
| 18 | 17 | elv | ⊢ ( 𝑥 ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ↔ ∃ 𝑤 ∈ Word 𝐺 𝑥 = ( 𝑀 Σg 𝑤 ) ) |
| 19 | 15 18 | sylibr | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐺 ) → 𝑥 ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ) |
| 20 | 19 | ex | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) → ( 𝑥 ∈ 𝐺 → 𝑥 ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ) ) |
| 21 | 20 | ssrdv | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) → 𝐺 ⊆ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ) |
| 22 | 2 | mrccl | ⊢ ( ( ( SubMnd ‘ 𝑀 ) ∈ ( Moore ‘ 𝐵 ) ∧ 𝐺 ⊆ 𝐵 ) → ( 𝐾 ‘ 𝐺 ) ∈ ( SubMnd ‘ 𝑀 ) ) |
| 23 | 4 22 | sylan | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) → ( 𝐾 ‘ 𝐺 ) ∈ ( SubMnd ‘ 𝑀 ) ) |
| 24 | 2 | mrcssid | ⊢ ( ( ( SubMnd ‘ 𝑀 ) ∈ ( Moore ‘ 𝐵 ) ∧ 𝐺 ⊆ 𝐵 ) → 𝐺 ⊆ ( 𝐾 ‘ 𝐺 ) ) |
| 25 | 4 24 | sylan | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) → 𝐺 ⊆ ( 𝐾 ‘ 𝐺 ) ) |
| 26 | sswrd | ⊢ ( 𝐺 ⊆ ( 𝐾 ‘ 𝐺 ) → Word 𝐺 ⊆ Word ( 𝐾 ‘ 𝐺 ) ) | |
| 27 | 25 26 | syl | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) → Word 𝐺 ⊆ Word ( 𝐾 ‘ 𝐺 ) ) |
| 28 | 27 | sselda | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) ∧ 𝑤 ∈ Word 𝐺 ) → 𝑤 ∈ Word ( 𝐾 ‘ 𝐺 ) ) |
| 29 | gsumwsubmcl | ⊢ ( ( ( 𝐾 ‘ 𝐺 ) ∈ ( SubMnd ‘ 𝑀 ) ∧ 𝑤 ∈ Word ( 𝐾 ‘ 𝐺 ) ) → ( 𝑀 Σg 𝑤 ) ∈ ( 𝐾 ‘ 𝐺 ) ) | |
| 30 | 23 28 29 | syl2an2r | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) ∧ 𝑤 ∈ Word 𝐺 ) → ( 𝑀 Σg 𝑤 ) ∈ ( 𝐾 ‘ 𝐺 ) ) |
| 31 | 30 | fmpttd | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) → ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) : Word 𝐺 ⟶ ( 𝐾 ‘ 𝐺 ) ) |
| 32 | 31 | frnd | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) → ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ⊆ ( 𝐾 ‘ 𝐺 ) ) |
| 33 | 4 2 | mrcssvd | ⊢ ( 𝑀 ∈ Mnd → ( 𝐾 ‘ 𝐺 ) ⊆ 𝐵 ) |
| 34 | 33 | adantr | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) → ( 𝐾 ‘ 𝐺 ) ⊆ 𝐵 ) |
| 35 | 32 34 | sstrd | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) → ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ⊆ 𝐵 ) |
| 36 | wrd0 | ⊢ ∅ ∈ Word 𝐺 | |
| 37 | eqid | ⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) | |
| 38 | 37 | gsum0 | ⊢ ( 𝑀 Σg ∅ ) = ( 0g ‘ 𝑀 ) |
| 39 | 38 | eqcomi | ⊢ ( 0g ‘ 𝑀 ) = ( 𝑀 Σg ∅ ) |
| 40 | 39 | a1i | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) → ( 0g ‘ 𝑀 ) = ( 𝑀 Σg ∅ ) ) |
| 41 | oveq2 | ⊢ ( 𝑤 = ∅ → ( 𝑀 Σg 𝑤 ) = ( 𝑀 Σg ∅ ) ) | |
| 42 | 41 | rspceeqv | ⊢ ( ( ∅ ∈ Word 𝐺 ∧ ( 0g ‘ 𝑀 ) = ( 𝑀 Σg ∅ ) ) → ∃ 𝑤 ∈ Word 𝐺 ( 0g ‘ 𝑀 ) = ( 𝑀 Σg 𝑤 ) ) |
| 43 | 36 40 42 | sylancr | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) → ∃ 𝑤 ∈ Word 𝐺 ( 0g ‘ 𝑀 ) = ( 𝑀 Σg 𝑤 ) ) |
| 44 | fvex | ⊢ ( 0g ‘ 𝑀 ) ∈ V | |
| 45 | 16 | elrnmpt | ⊢ ( ( 0g ‘ 𝑀 ) ∈ V → ( ( 0g ‘ 𝑀 ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ↔ ∃ 𝑤 ∈ Word 𝐺 ( 0g ‘ 𝑀 ) = ( 𝑀 Σg 𝑤 ) ) ) |
| 46 | 44 45 | ax-mp | ⊢ ( ( 0g ‘ 𝑀 ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ↔ ∃ 𝑤 ∈ Word 𝐺 ( 0g ‘ 𝑀 ) = ( 𝑀 Σg 𝑤 ) ) |
| 47 | 43 46 | sylibr | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) → ( 0g ‘ 𝑀 ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ) |
| 48 | ccatcl | ⊢ ( ( 𝑧 ∈ Word 𝐺 ∧ 𝑣 ∈ Word 𝐺 ) → ( 𝑧 ++ 𝑣 ) ∈ Word 𝐺 ) | |
| 49 | simpll | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ Word 𝐺 ∧ 𝑣 ∈ Word 𝐺 ) ) → 𝑀 ∈ Mnd ) | |
| 50 | sswrd | ⊢ ( 𝐺 ⊆ 𝐵 → Word 𝐺 ⊆ Word 𝐵 ) | |
| 51 | 50 | ad2antlr | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ Word 𝐺 ∧ 𝑣 ∈ Word 𝐺 ) ) → Word 𝐺 ⊆ Word 𝐵 ) |
| 52 | simprl | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ Word 𝐺 ∧ 𝑣 ∈ Word 𝐺 ) ) → 𝑧 ∈ Word 𝐺 ) | |
| 53 | 51 52 | sseldd | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ Word 𝐺 ∧ 𝑣 ∈ Word 𝐺 ) ) → 𝑧 ∈ Word 𝐵 ) |
| 54 | simprr | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ Word 𝐺 ∧ 𝑣 ∈ Word 𝐺 ) ) → 𝑣 ∈ Word 𝐺 ) | |
| 55 | 51 54 | sseldd | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ Word 𝐺 ∧ 𝑣 ∈ Word 𝐺 ) ) → 𝑣 ∈ Word 𝐵 ) |
| 56 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 57 | 1 56 | gsumccat | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑧 ∈ Word 𝐵 ∧ 𝑣 ∈ Word 𝐵 ) → ( 𝑀 Σg ( 𝑧 ++ 𝑣 ) ) = ( ( 𝑀 Σg 𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) ) |
| 58 | 49 53 55 57 | syl3anc | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ Word 𝐺 ∧ 𝑣 ∈ Word 𝐺 ) ) → ( 𝑀 Σg ( 𝑧 ++ 𝑣 ) ) = ( ( 𝑀 Σg 𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) ) |
| 59 | 58 | eqcomd | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ Word 𝐺 ∧ 𝑣 ∈ Word 𝐺 ) ) → ( ( 𝑀 Σg 𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) = ( 𝑀 Σg ( 𝑧 ++ 𝑣 ) ) ) |
| 60 | oveq2 | ⊢ ( 𝑤 = ( 𝑧 ++ 𝑣 ) → ( 𝑀 Σg 𝑤 ) = ( 𝑀 Σg ( 𝑧 ++ 𝑣 ) ) ) | |
| 61 | 60 | rspceeqv | ⊢ ( ( ( 𝑧 ++ 𝑣 ) ∈ Word 𝐺 ∧ ( ( 𝑀 Σg 𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) = ( 𝑀 Σg ( 𝑧 ++ 𝑣 ) ) ) → ∃ 𝑤 ∈ Word 𝐺 ( ( 𝑀 Σg 𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) = ( 𝑀 Σg 𝑤 ) ) |
| 62 | 48 59 61 | syl2an2 | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ Word 𝐺 ∧ 𝑣 ∈ Word 𝐺 ) ) → ∃ 𝑤 ∈ Word 𝐺 ( ( 𝑀 Σg 𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) = ( 𝑀 Σg 𝑤 ) ) |
| 63 | ovex | ⊢ ( ( 𝑀 Σg 𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) ∈ V | |
| 64 | 16 | elrnmpt | ⊢ ( ( ( 𝑀 Σg 𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) ∈ V → ( ( ( 𝑀 Σg 𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ↔ ∃ 𝑤 ∈ Word 𝐺 ( ( 𝑀 Σg 𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) = ( 𝑀 Σg 𝑤 ) ) ) |
| 65 | 63 64 | ax-mp | ⊢ ( ( ( 𝑀 Σg 𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ↔ ∃ 𝑤 ∈ Word 𝐺 ( ( 𝑀 Σg 𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) = ( 𝑀 Σg 𝑤 ) ) |
| 66 | 62 65 | sylibr | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ Word 𝐺 ∧ 𝑣 ∈ Word 𝐺 ) ) → ( ( 𝑀 Σg 𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ) |
| 67 | 66 | ralrimivva | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) → ∀ 𝑧 ∈ Word 𝐺 ∀ 𝑣 ∈ Word 𝐺 ( ( 𝑀 Σg 𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ) |
| 68 | oveq2 | ⊢ ( 𝑤 = 𝑧 → ( 𝑀 Σg 𝑤 ) = ( 𝑀 Σg 𝑧 ) ) | |
| 69 | 68 | cbvmptv | ⊢ ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) = ( 𝑧 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑧 ) ) |
| 70 | 69 | rneqi | ⊢ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) = ran ( 𝑧 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑧 ) ) |
| 71 | 70 | raleqi | ⊢ ( ∀ 𝑥 ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ∀ 𝑦 ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ↔ ∀ 𝑥 ∈ ran ( 𝑧 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑧 ) ) ∀ 𝑦 ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ) |
| 72 | oveq2 | ⊢ ( 𝑤 = 𝑣 → ( 𝑀 Σg 𝑤 ) = ( 𝑀 Σg 𝑣 ) ) | |
| 73 | 72 | cbvmptv | ⊢ ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) = ( 𝑣 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑣 ) ) |
| 74 | 73 | rneqi | ⊢ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) = ran ( 𝑣 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑣 ) ) |
| 75 | 74 | raleqi | ⊢ ( ∀ 𝑦 ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ↔ ∀ 𝑦 ∈ ran ( 𝑣 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑣 ) ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ) |
| 76 | eqid | ⊢ ( 𝑣 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑣 ) ) = ( 𝑣 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑣 ) ) | |
| 77 | oveq2 | ⊢ ( 𝑦 = ( 𝑀 Σg 𝑣 ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) ) | |
| 78 | 77 | eleq1d | ⊢ ( 𝑦 = ( 𝑀 Σg 𝑣 ) → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ↔ ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ) ) |
| 79 | 76 78 | ralrnmptw | ⊢ ( ∀ 𝑣 ∈ Word 𝐺 ( 𝑀 Σg 𝑣 ) ∈ V → ( ∀ 𝑦 ∈ ran ( 𝑣 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑣 ) ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ↔ ∀ 𝑣 ∈ Word 𝐺 ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ) ) |
| 80 | ovexd | ⊢ ( 𝑣 ∈ Word 𝐺 → ( 𝑀 Σg 𝑣 ) ∈ V ) | |
| 81 | 79 80 | mprg | ⊢ ( ∀ 𝑦 ∈ ran ( 𝑣 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑣 ) ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ↔ ∀ 𝑣 ∈ Word 𝐺 ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ) |
| 82 | 75 81 | bitri | ⊢ ( ∀ 𝑦 ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ↔ ∀ 𝑣 ∈ Word 𝐺 ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ) |
| 83 | 82 | ralbii | ⊢ ( ∀ 𝑥 ∈ ran ( 𝑧 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑧 ) ) ∀ 𝑦 ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ↔ ∀ 𝑥 ∈ ran ( 𝑧 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑧 ) ) ∀ 𝑣 ∈ Word 𝐺 ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ) |
| 84 | eqid | ⊢ ( 𝑧 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑧 ) ) = ( 𝑧 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑧 ) ) | |
| 85 | oveq1 | ⊢ ( 𝑥 = ( 𝑀 Σg 𝑧 ) → ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) = ( ( 𝑀 Σg 𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) ) | |
| 86 | 85 | eleq1d | ⊢ ( 𝑥 = ( 𝑀 Σg 𝑧 ) → ( ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ↔ ( ( 𝑀 Σg 𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ) ) |
| 87 | 86 | ralbidv | ⊢ ( 𝑥 = ( 𝑀 Σg 𝑧 ) → ( ∀ 𝑣 ∈ Word 𝐺 ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ↔ ∀ 𝑣 ∈ Word 𝐺 ( ( 𝑀 Σg 𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ) ) |
| 88 | 84 87 | ralrnmptw | ⊢ ( ∀ 𝑧 ∈ Word 𝐺 ( 𝑀 Σg 𝑧 ) ∈ V → ( ∀ 𝑥 ∈ ran ( 𝑧 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑧 ) ) ∀ 𝑣 ∈ Word 𝐺 ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ↔ ∀ 𝑧 ∈ Word 𝐺 ∀ 𝑣 ∈ Word 𝐺 ( ( 𝑀 Σg 𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ) ) |
| 89 | ovexd | ⊢ ( 𝑧 ∈ Word 𝐺 → ( 𝑀 Σg 𝑧 ) ∈ V ) | |
| 90 | 88 89 | mprg | ⊢ ( ∀ 𝑥 ∈ ran ( 𝑧 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑧 ) ) ∀ 𝑣 ∈ Word 𝐺 ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ↔ ∀ 𝑧 ∈ Word 𝐺 ∀ 𝑣 ∈ Word 𝐺 ( ( 𝑀 Σg 𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ) |
| 91 | 71 83 90 | 3bitri | ⊢ ( ∀ 𝑥 ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ∀ 𝑦 ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ↔ ∀ 𝑧 ∈ Word 𝐺 ∀ 𝑣 ∈ Word 𝐺 ( ( 𝑀 Σg 𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑣 ) ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ) |
| 92 | 67 91 | sylibr | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) → ∀ 𝑥 ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ∀ 𝑦 ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ) |
| 93 | 1 37 56 | issubm | ⊢ ( 𝑀 ∈ Mnd → ( ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ∈ ( SubMnd ‘ 𝑀 ) ↔ ( ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ⊆ 𝐵 ∧ ( 0g ‘ 𝑀 ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ∧ ∀ 𝑥 ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ∀ 𝑦 ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ) ) ) |
| 94 | 93 | adantr | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) → ( ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ∈ ( SubMnd ‘ 𝑀 ) ↔ ( ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ⊆ 𝐵 ∧ ( 0g ‘ 𝑀 ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ∧ ∀ 𝑥 ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ∀ 𝑦 ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ) ) ) |
| 95 | 35 47 92 94 | mpbir3and | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) → ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ∈ ( SubMnd ‘ 𝑀 ) ) |
| 96 | 2 | mrcsscl | ⊢ ( ( ( SubMnd ‘ 𝑀 ) ∈ ( Moore ‘ 𝐵 ) ∧ 𝐺 ⊆ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ∧ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ∈ ( SubMnd ‘ 𝑀 ) ) → ( 𝐾 ‘ 𝐺 ) ⊆ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ) |
| 97 | 5 21 95 96 | syl3anc | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) → ( 𝐾 ‘ 𝐺 ) ⊆ ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ) |
| 98 | 97 32 | eqssd | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵 ) → ( 𝐾 ‘ 𝐺 ) = ran ( 𝑤 ∈ Word 𝐺 ↦ ( 𝑀 Σg 𝑤 ) ) ) |