This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The submonoid generated by a set of elements is precisely the set of elements which can be expressed as finite products of the generator. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumwspan.b | |- B = ( Base ` M ) |
|
| gsumwspan.k | |- K = ( mrCls ` ( SubMnd ` M ) ) |
||
| Assertion | gsumwspan | |- ( ( M e. Mnd /\ G C_ B ) -> ( K ` G ) = ran ( w e. Word G |-> ( M gsum w ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumwspan.b | |- B = ( Base ` M ) |
|
| 2 | gsumwspan.k | |- K = ( mrCls ` ( SubMnd ` M ) ) |
|
| 3 | 1 | submacs | |- ( M e. Mnd -> ( SubMnd ` M ) e. ( ACS ` B ) ) |
| 4 | 3 | acsmred | |- ( M e. Mnd -> ( SubMnd ` M ) e. ( Moore ` B ) ) |
| 5 | 4 | adantr | |- ( ( M e. Mnd /\ G C_ B ) -> ( SubMnd ` M ) e. ( Moore ` B ) ) |
| 6 | simpr | |- ( ( ( M e. Mnd /\ G C_ B ) /\ x e. G ) -> x e. G ) |
|
| 7 | 6 | s1cld | |- ( ( ( M e. Mnd /\ G C_ B ) /\ x e. G ) -> <" x "> e. Word G ) |
| 8 | ssel2 | |- ( ( G C_ B /\ x e. G ) -> x e. B ) |
|
| 9 | 8 | adantll | |- ( ( ( M e. Mnd /\ G C_ B ) /\ x e. G ) -> x e. B ) |
| 10 | 1 | gsumws1 | |- ( x e. B -> ( M gsum <" x "> ) = x ) |
| 11 | 9 10 | syl | |- ( ( ( M e. Mnd /\ G C_ B ) /\ x e. G ) -> ( M gsum <" x "> ) = x ) |
| 12 | 11 | eqcomd | |- ( ( ( M e. Mnd /\ G C_ B ) /\ x e. G ) -> x = ( M gsum <" x "> ) ) |
| 13 | oveq2 | |- ( w = <" x "> -> ( M gsum w ) = ( M gsum <" x "> ) ) |
|
| 14 | 13 | rspceeqv | |- ( ( <" x "> e. Word G /\ x = ( M gsum <" x "> ) ) -> E. w e. Word G x = ( M gsum w ) ) |
| 15 | 7 12 14 | syl2anc | |- ( ( ( M e. Mnd /\ G C_ B ) /\ x e. G ) -> E. w e. Word G x = ( M gsum w ) ) |
| 16 | eqid | |- ( w e. Word G |-> ( M gsum w ) ) = ( w e. Word G |-> ( M gsum w ) ) |
|
| 17 | 16 | elrnmpt | |- ( x e. _V -> ( x e. ran ( w e. Word G |-> ( M gsum w ) ) <-> E. w e. Word G x = ( M gsum w ) ) ) |
| 18 | 17 | elv | |- ( x e. ran ( w e. Word G |-> ( M gsum w ) ) <-> E. w e. Word G x = ( M gsum w ) ) |
| 19 | 15 18 | sylibr | |- ( ( ( M e. Mnd /\ G C_ B ) /\ x e. G ) -> x e. ran ( w e. Word G |-> ( M gsum w ) ) ) |
| 20 | 19 | ex | |- ( ( M e. Mnd /\ G C_ B ) -> ( x e. G -> x e. ran ( w e. Word G |-> ( M gsum w ) ) ) ) |
| 21 | 20 | ssrdv | |- ( ( M e. Mnd /\ G C_ B ) -> G C_ ran ( w e. Word G |-> ( M gsum w ) ) ) |
| 22 | 2 | mrccl | |- ( ( ( SubMnd ` M ) e. ( Moore ` B ) /\ G C_ B ) -> ( K ` G ) e. ( SubMnd ` M ) ) |
| 23 | 4 22 | sylan | |- ( ( M e. Mnd /\ G C_ B ) -> ( K ` G ) e. ( SubMnd ` M ) ) |
| 24 | 2 | mrcssid | |- ( ( ( SubMnd ` M ) e. ( Moore ` B ) /\ G C_ B ) -> G C_ ( K ` G ) ) |
| 25 | 4 24 | sylan | |- ( ( M e. Mnd /\ G C_ B ) -> G C_ ( K ` G ) ) |
| 26 | sswrd | |- ( G C_ ( K ` G ) -> Word G C_ Word ( K ` G ) ) |
|
| 27 | 25 26 | syl | |- ( ( M e. Mnd /\ G C_ B ) -> Word G C_ Word ( K ` G ) ) |
| 28 | 27 | sselda | |- ( ( ( M e. Mnd /\ G C_ B ) /\ w e. Word G ) -> w e. Word ( K ` G ) ) |
| 29 | gsumwsubmcl | |- ( ( ( K ` G ) e. ( SubMnd ` M ) /\ w e. Word ( K ` G ) ) -> ( M gsum w ) e. ( K ` G ) ) |
|
| 30 | 23 28 29 | syl2an2r | |- ( ( ( M e. Mnd /\ G C_ B ) /\ w e. Word G ) -> ( M gsum w ) e. ( K ` G ) ) |
| 31 | 30 | fmpttd | |- ( ( M e. Mnd /\ G C_ B ) -> ( w e. Word G |-> ( M gsum w ) ) : Word G --> ( K ` G ) ) |
| 32 | 31 | frnd | |- ( ( M e. Mnd /\ G C_ B ) -> ran ( w e. Word G |-> ( M gsum w ) ) C_ ( K ` G ) ) |
| 33 | 4 2 | mrcssvd | |- ( M e. Mnd -> ( K ` G ) C_ B ) |
| 34 | 33 | adantr | |- ( ( M e. Mnd /\ G C_ B ) -> ( K ` G ) C_ B ) |
| 35 | 32 34 | sstrd | |- ( ( M e. Mnd /\ G C_ B ) -> ran ( w e. Word G |-> ( M gsum w ) ) C_ B ) |
| 36 | wrd0 | |- (/) e. Word G |
|
| 37 | eqid | |- ( 0g ` M ) = ( 0g ` M ) |
|
| 38 | 37 | gsum0 | |- ( M gsum (/) ) = ( 0g ` M ) |
| 39 | 38 | eqcomi | |- ( 0g ` M ) = ( M gsum (/) ) |
| 40 | 39 | a1i | |- ( ( M e. Mnd /\ G C_ B ) -> ( 0g ` M ) = ( M gsum (/) ) ) |
| 41 | oveq2 | |- ( w = (/) -> ( M gsum w ) = ( M gsum (/) ) ) |
|
| 42 | 41 | rspceeqv | |- ( ( (/) e. Word G /\ ( 0g ` M ) = ( M gsum (/) ) ) -> E. w e. Word G ( 0g ` M ) = ( M gsum w ) ) |
| 43 | 36 40 42 | sylancr | |- ( ( M e. Mnd /\ G C_ B ) -> E. w e. Word G ( 0g ` M ) = ( M gsum w ) ) |
| 44 | fvex | |- ( 0g ` M ) e. _V |
|
| 45 | 16 | elrnmpt | |- ( ( 0g ` M ) e. _V -> ( ( 0g ` M ) e. ran ( w e. Word G |-> ( M gsum w ) ) <-> E. w e. Word G ( 0g ` M ) = ( M gsum w ) ) ) |
| 46 | 44 45 | ax-mp | |- ( ( 0g ` M ) e. ran ( w e. Word G |-> ( M gsum w ) ) <-> E. w e. Word G ( 0g ` M ) = ( M gsum w ) ) |
| 47 | 43 46 | sylibr | |- ( ( M e. Mnd /\ G C_ B ) -> ( 0g ` M ) e. ran ( w e. Word G |-> ( M gsum w ) ) ) |
| 48 | ccatcl | |- ( ( z e. Word G /\ v e. Word G ) -> ( z ++ v ) e. Word G ) |
|
| 49 | simpll | |- ( ( ( M e. Mnd /\ G C_ B ) /\ ( z e. Word G /\ v e. Word G ) ) -> M e. Mnd ) |
|
| 50 | sswrd | |- ( G C_ B -> Word G C_ Word B ) |
|
| 51 | 50 | ad2antlr | |- ( ( ( M e. Mnd /\ G C_ B ) /\ ( z e. Word G /\ v e. Word G ) ) -> Word G C_ Word B ) |
| 52 | simprl | |- ( ( ( M e. Mnd /\ G C_ B ) /\ ( z e. Word G /\ v e. Word G ) ) -> z e. Word G ) |
|
| 53 | 51 52 | sseldd | |- ( ( ( M e. Mnd /\ G C_ B ) /\ ( z e. Word G /\ v e. Word G ) ) -> z e. Word B ) |
| 54 | simprr | |- ( ( ( M e. Mnd /\ G C_ B ) /\ ( z e. Word G /\ v e. Word G ) ) -> v e. Word G ) |
|
| 55 | 51 54 | sseldd | |- ( ( ( M e. Mnd /\ G C_ B ) /\ ( z e. Word G /\ v e. Word G ) ) -> v e. Word B ) |
| 56 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 57 | 1 56 | gsumccat | |- ( ( M e. Mnd /\ z e. Word B /\ v e. Word B ) -> ( M gsum ( z ++ v ) ) = ( ( M gsum z ) ( +g ` M ) ( M gsum v ) ) ) |
| 58 | 49 53 55 57 | syl3anc | |- ( ( ( M e. Mnd /\ G C_ B ) /\ ( z e. Word G /\ v e. Word G ) ) -> ( M gsum ( z ++ v ) ) = ( ( M gsum z ) ( +g ` M ) ( M gsum v ) ) ) |
| 59 | 58 | eqcomd | |- ( ( ( M e. Mnd /\ G C_ B ) /\ ( z e. Word G /\ v e. Word G ) ) -> ( ( M gsum z ) ( +g ` M ) ( M gsum v ) ) = ( M gsum ( z ++ v ) ) ) |
| 60 | oveq2 | |- ( w = ( z ++ v ) -> ( M gsum w ) = ( M gsum ( z ++ v ) ) ) |
|
| 61 | 60 | rspceeqv | |- ( ( ( z ++ v ) e. Word G /\ ( ( M gsum z ) ( +g ` M ) ( M gsum v ) ) = ( M gsum ( z ++ v ) ) ) -> E. w e. Word G ( ( M gsum z ) ( +g ` M ) ( M gsum v ) ) = ( M gsum w ) ) |
| 62 | 48 59 61 | syl2an2 | |- ( ( ( M e. Mnd /\ G C_ B ) /\ ( z e. Word G /\ v e. Word G ) ) -> E. w e. Word G ( ( M gsum z ) ( +g ` M ) ( M gsum v ) ) = ( M gsum w ) ) |
| 63 | ovex | |- ( ( M gsum z ) ( +g ` M ) ( M gsum v ) ) e. _V |
|
| 64 | 16 | elrnmpt | |- ( ( ( M gsum z ) ( +g ` M ) ( M gsum v ) ) e. _V -> ( ( ( M gsum z ) ( +g ` M ) ( M gsum v ) ) e. ran ( w e. Word G |-> ( M gsum w ) ) <-> E. w e. Word G ( ( M gsum z ) ( +g ` M ) ( M gsum v ) ) = ( M gsum w ) ) ) |
| 65 | 63 64 | ax-mp | |- ( ( ( M gsum z ) ( +g ` M ) ( M gsum v ) ) e. ran ( w e. Word G |-> ( M gsum w ) ) <-> E. w e. Word G ( ( M gsum z ) ( +g ` M ) ( M gsum v ) ) = ( M gsum w ) ) |
| 66 | 62 65 | sylibr | |- ( ( ( M e. Mnd /\ G C_ B ) /\ ( z e. Word G /\ v e. Word G ) ) -> ( ( M gsum z ) ( +g ` M ) ( M gsum v ) ) e. ran ( w e. Word G |-> ( M gsum w ) ) ) |
| 67 | 66 | ralrimivva | |- ( ( M e. Mnd /\ G C_ B ) -> A. z e. Word G A. v e. Word G ( ( M gsum z ) ( +g ` M ) ( M gsum v ) ) e. ran ( w e. Word G |-> ( M gsum w ) ) ) |
| 68 | oveq2 | |- ( w = z -> ( M gsum w ) = ( M gsum z ) ) |
|
| 69 | 68 | cbvmptv | |- ( w e. Word G |-> ( M gsum w ) ) = ( z e. Word G |-> ( M gsum z ) ) |
| 70 | 69 | rneqi | |- ran ( w e. Word G |-> ( M gsum w ) ) = ran ( z e. Word G |-> ( M gsum z ) ) |
| 71 | 70 | raleqi | |- ( A. x e. ran ( w e. Word G |-> ( M gsum w ) ) A. y e. ran ( w e. Word G |-> ( M gsum w ) ) ( x ( +g ` M ) y ) e. ran ( w e. Word G |-> ( M gsum w ) ) <-> A. x e. ran ( z e. Word G |-> ( M gsum z ) ) A. y e. ran ( w e. Word G |-> ( M gsum w ) ) ( x ( +g ` M ) y ) e. ran ( w e. Word G |-> ( M gsum w ) ) ) |
| 72 | oveq2 | |- ( w = v -> ( M gsum w ) = ( M gsum v ) ) |
|
| 73 | 72 | cbvmptv | |- ( w e. Word G |-> ( M gsum w ) ) = ( v e. Word G |-> ( M gsum v ) ) |
| 74 | 73 | rneqi | |- ran ( w e. Word G |-> ( M gsum w ) ) = ran ( v e. Word G |-> ( M gsum v ) ) |
| 75 | 74 | raleqi | |- ( A. y e. ran ( w e. Word G |-> ( M gsum w ) ) ( x ( +g ` M ) y ) e. ran ( w e. Word G |-> ( M gsum w ) ) <-> A. y e. ran ( v e. Word G |-> ( M gsum v ) ) ( x ( +g ` M ) y ) e. ran ( w e. Word G |-> ( M gsum w ) ) ) |
| 76 | eqid | |- ( v e. Word G |-> ( M gsum v ) ) = ( v e. Word G |-> ( M gsum v ) ) |
|
| 77 | oveq2 | |- ( y = ( M gsum v ) -> ( x ( +g ` M ) y ) = ( x ( +g ` M ) ( M gsum v ) ) ) |
|
| 78 | 77 | eleq1d | |- ( y = ( M gsum v ) -> ( ( x ( +g ` M ) y ) e. ran ( w e. Word G |-> ( M gsum w ) ) <-> ( x ( +g ` M ) ( M gsum v ) ) e. ran ( w e. Word G |-> ( M gsum w ) ) ) ) |
| 79 | 76 78 | ralrnmptw | |- ( A. v e. Word G ( M gsum v ) e. _V -> ( A. y e. ran ( v e. Word G |-> ( M gsum v ) ) ( x ( +g ` M ) y ) e. ran ( w e. Word G |-> ( M gsum w ) ) <-> A. v e. Word G ( x ( +g ` M ) ( M gsum v ) ) e. ran ( w e. Word G |-> ( M gsum w ) ) ) ) |
| 80 | ovexd | |- ( v e. Word G -> ( M gsum v ) e. _V ) |
|
| 81 | 79 80 | mprg | |- ( A. y e. ran ( v e. Word G |-> ( M gsum v ) ) ( x ( +g ` M ) y ) e. ran ( w e. Word G |-> ( M gsum w ) ) <-> A. v e. Word G ( x ( +g ` M ) ( M gsum v ) ) e. ran ( w e. Word G |-> ( M gsum w ) ) ) |
| 82 | 75 81 | bitri | |- ( A. y e. ran ( w e. Word G |-> ( M gsum w ) ) ( x ( +g ` M ) y ) e. ran ( w e. Word G |-> ( M gsum w ) ) <-> A. v e. Word G ( x ( +g ` M ) ( M gsum v ) ) e. ran ( w e. Word G |-> ( M gsum w ) ) ) |
| 83 | 82 | ralbii | |- ( A. x e. ran ( z e. Word G |-> ( M gsum z ) ) A. y e. ran ( w e. Word G |-> ( M gsum w ) ) ( x ( +g ` M ) y ) e. ran ( w e. Word G |-> ( M gsum w ) ) <-> A. x e. ran ( z e. Word G |-> ( M gsum z ) ) A. v e. Word G ( x ( +g ` M ) ( M gsum v ) ) e. ran ( w e. Word G |-> ( M gsum w ) ) ) |
| 84 | eqid | |- ( z e. Word G |-> ( M gsum z ) ) = ( z e. Word G |-> ( M gsum z ) ) |
|
| 85 | oveq1 | |- ( x = ( M gsum z ) -> ( x ( +g ` M ) ( M gsum v ) ) = ( ( M gsum z ) ( +g ` M ) ( M gsum v ) ) ) |
|
| 86 | 85 | eleq1d | |- ( x = ( M gsum z ) -> ( ( x ( +g ` M ) ( M gsum v ) ) e. ran ( w e. Word G |-> ( M gsum w ) ) <-> ( ( M gsum z ) ( +g ` M ) ( M gsum v ) ) e. ran ( w e. Word G |-> ( M gsum w ) ) ) ) |
| 87 | 86 | ralbidv | |- ( x = ( M gsum z ) -> ( A. v e. Word G ( x ( +g ` M ) ( M gsum v ) ) e. ran ( w e. Word G |-> ( M gsum w ) ) <-> A. v e. Word G ( ( M gsum z ) ( +g ` M ) ( M gsum v ) ) e. ran ( w e. Word G |-> ( M gsum w ) ) ) ) |
| 88 | 84 87 | ralrnmptw | |- ( A. z e. Word G ( M gsum z ) e. _V -> ( A. x e. ran ( z e. Word G |-> ( M gsum z ) ) A. v e. Word G ( x ( +g ` M ) ( M gsum v ) ) e. ran ( w e. Word G |-> ( M gsum w ) ) <-> A. z e. Word G A. v e. Word G ( ( M gsum z ) ( +g ` M ) ( M gsum v ) ) e. ran ( w e. Word G |-> ( M gsum w ) ) ) ) |
| 89 | ovexd | |- ( z e. Word G -> ( M gsum z ) e. _V ) |
|
| 90 | 88 89 | mprg | |- ( A. x e. ran ( z e. Word G |-> ( M gsum z ) ) A. v e. Word G ( x ( +g ` M ) ( M gsum v ) ) e. ran ( w e. Word G |-> ( M gsum w ) ) <-> A. z e. Word G A. v e. Word G ( ( M gsum z ) ( +g ` M ) ( M gsum v ) ) e. ran ( w e. Word G |-> ( M gsum w ) ) ) |
| 91 | 71 83 90 | 3bitri | |- ( A. x e. ran ( w e. Word G |-> ( M gsum w ) ) A. y e. ran ( w e. Word G |-> ( M gsum w ) ) ( x ( +g ` M ) y ) e. ran ( w e. Word G |-> ( M gsum w ) ) <-> A. z e. Word G A. v e. Word G ( ( M gsum z ) ( +g ` M ) ( M gsum v ) ) e. ran ( w e. Word G |-> ( M gsum w ) ) ) |
| 92 | 67 91 | sylibr | |- ( ( M e. Mnd /\ G C_ B ) -> A. x e. ran ( w e. Word G |-> ( M gsum w ) ) A. y e. ran ( w e. Word G |-> ( M gsum w ) ) ( x ( +g ` M ) y ) e. ran ( w e. Word G |-> ( M gsum w ) ) ) |
| 93 | 1 37 56 | issubm | |- ( M e. Mnd -> ( ran ( w e. Word G |-> ( M gsum w ) ) e. ( SubMnd ` M ) <-> ( ran ( w e. Word G |-> ( M gsum w ) ) C_ B /\ ( 0g ` M ) e. ran ( w e. Word G |-> ( M gsum w ) ) /\ A. x e. ran ( w e. Word G |-> ( M gsum w ) ) A. y e. ran ( w e. Word G |-> ( M gsum w ) ) ( x ( +g ` M ) y ) e. ran ( w e. Word G |-> ( M gsum w ) ) ) ) ) |
| 94 | 93 | adantr | |- ( ( M e. Mnd /\ G C_ B ) -> ( ran ( w e. Word G |-> ( M gsum w ) ) e. ( SubMnd ` M ) <-> ( ran ( w e. Word G |-> ( M gsum w ) ) C_ B /\ ( 0g ` M ) e. ran ( w e. Word G |-> ( M gsum w ) ) /\ A. x e. ran ( w e. Word G |-> ( M gsum w ) ) A. y e. ran ( w e. Word G |-> ( M gsum w ) ) ( x ( +g ` M ) y ) e. ran ( w e. Word G |-> ( M gsum w ) ) ) ) ) |
| 95 | 35 47 92 94 | mpbir3and | |- ( ( M e. Mnd /\ G C_ B ) -> ran ( w e. Word G |-> ( M gsum w ) ) e. ( SubMnd ` M ) ) |
| 96 | 2 | mrcsscl | |- ( ( ( SubMnd ` M ) e. ( Moore ` B ) /\ G C_ ran ( w e. Word G |-> ( M gsum w ) ) /\ ran ( w e. Word G |-> ( M gsum w ) ) e. ( SubMnd ` M ) ) -> ( K ` G ) C_ ran ( w e. Word G |-> ( M gsum w ) ) ) |
| 97 | 5 21 95 96 | syl3anc | |- ( ( M e. Mnd /\ G C_ B ) -> ( K ` G ) C_ ran ( w e. Word G |-> ( M gsum w ) ) ) |
| 98 | 97 32 | eqssd | |- ( ( M e. Mnd /\ G C_ B ) -> ( K ` G ) = ran ( w e. Word G |-> ( M gsum w ) ) ) |