This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of iota. (Contributed by NM, 23-Aug-2011) (Revised by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iota1 | ⊢ ( ∃! 𝑥 𝜑 → ( 𝜑 ↔ ( ℩ 𝑥 𝜑 ) = 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eu6 | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) | |
| 2 | sp | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ( 𝜑 ↔ 𝑥 = 𝑧 ) ) | |
| 3 | iotaval | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ( ℩ 𝑥 𝜑 ) = 𝑧 ) | |
| 4 | 3 | eqeq2d | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ( 𝑥 = ( ℩ 𝑥 𝜑 ) ↔ 𝑥 = 𝑧 ) ) |
| 5 | 2 4 | bitr4d | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ( 𝜑 ↔ 𝑥 = ( ℩ 𝑥 𝜑 ) ) ) |
| 6 | eqcom | ⊢ ( 𝑥 = ( ℩ 𝑥 𝜑 ) ↔ ( ℩ 𝑥 𝜑 ) = 𝑥 ) | |
| 7 | 5 6 | bitrdi | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ( 𝜑 ↔ ( ℩ 𝑥 𝜑 ) = 𝑥 ) ) |
| 8 | 7 | exlimiv | ⊢ ( ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ( 𝜑 ↔ ( ℩ 𝑥 𝜑 ) = 𝑥 ) ) |
| 9 | 1 8 | sylbi | ⊢ ( ∃! 𝑥 𝜑 → ( 𝜑 ↔ ( ℩ 𝑥 𝜑 ) = 𝑥 ) ) |