This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for gsumpropd2 . (Contributed by Thierry Arnoux, 28-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumpropd2.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| gsumpropd2.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | ||
| gsumpropd2.h | ⊢ ( 𝜑 → 𝐻 ∈ 𝑋 ) | ||
| gsumpropd2.b | ⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) ) | ||
| gsumpropd2.c | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) ∈ ( Base ‘ 𝐺 ) ) | ||
| gsumpropd2.e | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) ) | ||
| gsumpropd2.n | ⊢ ( 𝜑 → Fun 𝐹 ) | ||
| gsumpropd2.r | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( Base ‘ 𝐺 ) ) | ||
| gsumprop2dlem.1 | ⊢ 𝐴 = ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) | ||
| gsumprop2dlem.2 | ⊢ 𝐵 = ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) | ||
| Assertion | gsumpropd2lem | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐻 Σg 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumpropd2.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 2 | gsumpropd2.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | |
| 3 | gsumpropd2.h | ⊢ ( 𝜑 → 𝐻 ∈ 𝑋 ) | |
| 4 | gsumpropd2.b | ⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) ) | |
| 5 | gsumpropd2.c | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) ∈ ( Base ‘ 𝐺 ) ) | |
| 6 | gsumpropd2.e | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) ) | |
| 7 | gsumpropd2.n | ⊢ ( 𝜑 → Fun 𝐹 ) | |
| 8 | gsumpropd2.r | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( Base ‘ 𝐺 ) ) | |
| 9 | gsumprop2dlem.1 | ⊢ 𝐴 = ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) | |
| 10 | gsumprop2dlem.2 | ⊢ 𝐵 = ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) | |
| 11 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( Base ‘ 𝐺 ) ) → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) ) |
| 12 | 6 | eqeq1d | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ↔ ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ) ) |
| 13 | 6 | oveqrspc2v | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 𝑎 ( +g ‘ 𝐻 ) 𝑏 ) ) |
| 14 | 13 | oveqrspc2v | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( Base ‘ 𝐺 ) ∧ 𝑠 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) ) |
| 15 | 14 | ancom2s | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) ) |
| 16 | 15 | eqeq1d | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ↔ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) ) |
| 17 | 12 16 | anbi12d | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) ↔ ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) ) ) |
| 18 | 17 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) → ( ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) ↔ ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) ) ) |
| 19 | 11 18 | raleqbidva | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( Base ‘ 𝐺 ) ) → ( ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) ↔ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) ) ) |
| 20 | 4 19 | rabeqbidva | ⊢ ( 𝜑 → { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } = { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) |
| 21 | 20 | sseq2d | ⊢ ( 𝜑 → ( ran 𝐹 ⊆ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ↔ ran 𝐹 ⊆ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) |
| 22 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) | |
| 23 | 22 4 6 | grpidpropd | ⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 24 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) | |
| 25 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) ∧ 𝑠 ∈ ( 𝑚 ... 𝑛 ) ) → ran 𝐹 ⊆ ( Base ‘ 𝐺 ) ) |
| 26 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) ∧ 𝑠 ∈ ( 𝑚 ... 𝑛 ) ) → Fun 𝐹 ) |
| 27 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) ∧ 𝑠 ∈ ( 𝑚 ... 𝑛 ) ) → 𝑠 ∈ ( 𝑚 ... 𝑛 ) ) | |
| 28 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) ∧ 𝑠 ∈ ( 𝑚 ... 𝑛 ) ) → dom 𝐹 = ( 𝑚 ... 𝑛 ) ) | |
| 29 | 27 28 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) ∧ 𝑠 ∈ ( 𝑚 ... 𝑛 ) ) → 𝑠 ∈ dom 𝐹 ) |
| 30 | fvelrn | ⊢ ( ( Fun 𝐹 ∧ 𝑠 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑠 ) ∈ ran 𝐹 ) | |
| 31 | 26 29 30 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) ∧ 𝑠 ∈ ( 𝑚 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑠 ) ∈ ran 𝐹 ) |
| 32 | 25 31 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) ∧ 𝑠 ∈ ( 𝑚 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑠 ) ∈ ( Base ‘ 𝐺 ) ) |
| 33 | 5 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) ∈ ( Base ‘ 𝐺 ) ) |
| 34 | 6 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) ) |
| 35 | 24 32 33 34 | seqfeq4 | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) → ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) |
| 36 | 35 | eqeq2d | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) → ( 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) ↔ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) |
| 37 | 36 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) → ( 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) ↔ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) |
| 38 | 37 | pm5.32da | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) ) ↔ ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 39 | 38 | rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) ) ↔ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 40 | 39 | exbidv | ⊢ ( 𝜑 → ( ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) ) ↔ ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 41 | 40 | iotabidv | ⊢ ( 𝜑 → ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) ) ) = ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 42 | 20 | difeq2d | ⊢ ( 𝜑 → ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) = ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) |
| 43 | 42 | imaeq2d | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) = ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ) |
| 44 | 43 9 10 | 3eqtr4g | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| 45 | 44 | fveq2d | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) |
| 46 | 45 | fveq2d | ⊢ ( 𝜑 → ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) |
| 47 | 46 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) |
| 48 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) → ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) | |
| 49 | 8 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ran 𝐹 ⊆ ( Base ‘ 𝐺 ) ) |
| 50 | f1ofun | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → Fun 𝑓 ) | |
| 51 | 50 | ad3antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → Fun 𝑓 ) |
| 52 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) | |
| 53 | f1odm | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → dom 𝑓 = ( 1 ... ( ♯ ‘ 𝐴 ) ) ) | |
| 54 | 53 | ad3antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → dom 𝑓 = ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 55 | 45 | oveq2d | ⊢ ( 𝜑 → ( 1 ... ( ♯ ‘ 𝐴 ) ) = ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
| 56 | 55 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( 1 ... ( ♯ ‘ 𝐴 ) ) = ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
| 57 | 54 56 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → dom 𝑓 = ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
| 58 | 52 57 | eleqtrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → 𝑎 ∈ dom 𝑓 ) |
| 59 | fvco | ⊢ ( ( Fun 𝑓 ∧ 𝑎 ∈ dom 𝑓 ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑎 ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑎 ) ) ) | |
| 60 | 51 58 59 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑎 ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑎 ) ) ) |
| 61 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → Fun 𝐹 ) |
| 62 | difpreima | ⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) = ( ( ◡ 𝐹 “ V ) ∖ ( ◡ 𝐹 “ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ) | |
| 63 | 7 62 | syl | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) = ( ( ◡ 𝐹 “ V ) ∖ ( ◡ 𝐹 “ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ) |
| 64 | 9 63 | eqtrid | ⊢ ( 𝜑 → 𝐴 = ( ( ◡ 𝐹 “ V ) ∖ ( ◡ 𝐹 “ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ) |
| 65 | difss | ⊢ ( ( ◡ 𝐹 “ V ) ∖ ( ◡ 𝐹 “ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ⊆ ( ◡ 𝐹 “ V ) | |
| 66 | 64 65 | eqsstrdi | ⊢ ( 𝜑 → 𝐴 ⊆ ( ◡ 𝐹 “ V ) ) |
| 67 | dfdm4 | ⊢ dom 𝐹 = ran ◡ 𝐹 | |
| 68 | dfrn4 | ⊢ ran ◡ 𝐹 = ( ◡ 𝐹 “ V ) | |
| 69 | 67 68 | eqtri | ⊢ dom 𝐹 = ( ◡ 𝐹 “ V ) |
| 70 | 66 69 | sseqtrrdi | ⊢ ( 𝜑 → 𝐴 ⊆ dom 𝐹 ) |
| 71 | 70 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → 𝐴 ⊆ dom 𝐹 ) |
| 72 | f1of | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) | |
| 73 | 72 | ad3antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
| 74 | 52 56 | eleqtrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 75 | 73 74 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( 𝑓 ‘ 𝑎 ) ∈ 𝐴 ) |
| 76 | 71 75 | sseldd | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( 𝑓 ‘ 𝑎 ) ∈ dom 𝐹 ) |
| 77 | fvelrn | ⊢ ( ( Fun 𝐹 ∧ ( 𝑓 ‘ 𝑎 ) ∈ dom 𝐹 ) → ( 𝐹 ‘ ( 𝑓 ‘ 𝑎 ) ) ∈ ran 𝐹 ) | |
| 78 | 61 76 77 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( 𝐹 ‘ ( 𝑓 ‘ 𝑎 ) ) ∈ ran 𝐹 ) |
| 79 | 60 78 | eqeltrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑎 ) ∈ ran 𝐹 ) |
| 80 | 49 79 | sseldd | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝐺 ) ) |
| 81 | 5 | caovclg | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ ( Base ‘ 𝐺 ) ) |
| 82 | 81 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ ( Base ‘ 𝐺 ) ) |
| 83 | 13 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 𝑎 ( +g ‘ 𝐻 ) 𝑏 ) ) |
| 84 | 48 80 82 83 | seqfeq4 | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) |
| 85 | simpr | ⊢ ( ( 𝜑 ∧ ¬ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) → ¬ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) | |
| 86 | 1z | ⊢ 1 ∈ ℤ | |
| 87 | seqfn | ⊢ ( 1 ∈ ℤ → seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) Fn ( ℤ≥ ‘ 1 ) ) | |
| 88 | fndm | ⊢ ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) Fn ( ℤ≥ ‘ 1 ) → dom seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) = ( ℤ≥ ‘ 1 ) ) | |
| 89 | 86 87 88 | mp2b | ⊢ dom seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) = ( ℤ≥ ‘ 1 ) |
| 90 | 89 | eleq2i | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ dom seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ↔ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 91 | 85 90 | sylnibr | ⊢ ( ( 𝜑 ∧ ¬ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) → ¬ ( ♯ ‘ 𝐵 ) ∈ dom seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ) |
| 92 | ndmfv | ⊢ ( ¬ ( ♯ ‘ 𝐵 ) ∈ dom seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) = ∅ ) | |
| 93 | 91 92 | syl | ⊢ ( ( 𝜑 ∧ ¬ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) = ∅ ) |
| 94 | seqfn | ⊢ ( 1 ∈ ℤ → seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) Fn ( ℤ≥ ‘ 1 ) ) | |
| 95 | fndm | ⊢ ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) Fn ( ℤ≥ ‘ 1 ) → dom seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) = ( ℤ≥ ‘ 1 ) ) | |
| 96 | 86 94 95 | mp2b | ⊢ dom seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) = ( ℤ≥ ‘ 1 ) |
| 97 | 96 | eleq2i | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ dom seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ↔ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 98 | 85 97 | sylnibr | ⊢ ( ( 𝜑 ∧ ¬ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) → ¬ ( ♯ ‘ 𝐵 ) ∈ dom seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ) |
| 99 | ndmfv | ⊢ ( ¬ ( ♯ ‘ 𝐵 ) ∈ dom seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) → ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) = ∅ ) | |
| 100 | 98 99 | syl | ⊢ ( ( 𝜑 ∧ ¬ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) → ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) = ∅ ) |
| 101 | 93 100 | eqtr4d | ⊢ ( ( 𝜑 ∧ ¬ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) |
| 102 | 101 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ¬ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) |
| 103 | 84 102 | pm2.61dan | ⊢ ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) |
| 104 | 47 103 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) |
| 105 | 104 | eqeq2d | ⊢ ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → ( 𝑥 = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ↔ 𝑥 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ) |
| 106 | 105 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ↔ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ) ) |
| 107 | 55 | f1oeq2d | ⊢ ( 𝜑 → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ↔ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐴 ) ) |
| 108 | 44 | f1oeq3d | ⊢ ( 𝜑 → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐴 ↔ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) |
| 109 | 107 108 | bitrd | ⊢ ( 𝜑 → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ↔ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) |
| 110 | 109 | anbi1d | ⊢ ( 𝜑 → ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ↔ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ) ) |
| 111 | 106 110 | bitrd | ⊢ ( 𝜑 → ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ↔ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ) ) |
| 112 | 111 | exbidv | ⊢ ( 𝜑 → ( ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ) ) |
| 113 | 112 | iotabidv | ⊢ ( 𝜑 → ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ) = ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ) ) |
| 114 | 41 113 | ifeq12d | ⊢ ( 𝜑 → if ( dom 𝐹 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ) ) = if ( dom 𝐹 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ) ) ) |
| 115 | 21 23 114 | ifbieq12d | ⊢ ( 𝜑 → if ( ran 𝐹 ⊆ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } , ( 0g ‘ 𝐺 ) , if ( dom 𝐹 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ) ) ) = if ( ran 𝐹 ⊆ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } , ( 0g ‘ 𝐻 ) , if ( dom 𝐹 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ) ) ) ) |
| 116 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 117 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 118 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 119 | eqid | ⊢ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } = { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } | |
| 120 | 9 | a1i | ⊢ ( 𝜑 → 𝐴 = ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ) |
| 121 | eqidd | ⊢ ( 𝜑 → dom 𝐹 = dom 𝐹 ) | |
| 122 | 116 117 118 119 120 2 1 121 | gsumvalx | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = if ( ran 𝐹 ⊆ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } , ( 0g ‘ 𝐺 ) , if ( dom 𝐹 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ) ) ) ) |
| 123 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 124 | eqid | ⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) | |
| 125 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 126 | eqid | ⊢ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } = { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } | |
| 127 | 10 | a1i | ⊢ ( 𝜑 → 𝐵 = ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ) |
| 128 | 123 124 125 126 127 3 1 121 | gsumvalx | ⊢ ( 𝜑 → ( 𝐻 Σg 𝐹 ) = if ( ran 𝐹 ⊆ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } , ( 0g ‘ 𝐻 ) , if ( dom 𝐹 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ) ) ) ) |
| 129 | 115 122 128 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐻 Σg 𝐹 ) ) |