This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, they have the same identity element. (Contributed by Mario Carneiro, 27-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpidpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| grpidpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| grpidpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | ||
| Assertion | grpidpropd | ⊢ ( 𝜑 → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | grpidpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 3 | grpidpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | |
| 4 | 3 | eqeq1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = 𝑦 ↔ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = 𝑦 ) ) |
| 5 | 3 | oveqrspc2v | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑧 ( +g ‘ 𝐾 ) 𝑤 ) = ( 𝑧 ( +g ‘ 𝐿 ) 𝑤 ) ) |
| 6 | 5 | oveqrspc2v | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑦 ( +g ‘ 𝐾 ) 𝑥 ) = ( 𝑦 ( +g ‘ 𝐿 ) 𝑥 ) ) |
| 7 | 6 | ancom2s | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑦 ( +g ‘ 𝐾 ) 𝑥 ) = ( 𝑦 ( +g ‘ 𝐿 ) 𝑥 ) ) |
| 8 | 7 | eqeq1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑦 ( +g ‘ 𝐾 ) 𝑥 ) = 𝑦 ↔ ( 𝑦 ( +g ‘ 𝐿 ) 𝑥 ) = 𝑦 ) ) |
| 9 | 4 8 | anbi12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐾 ) 𝑥 ) = 𝑦 ) ↔ ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐿 ) 𝑥 ) = 𝑦 ) ) ) |
| 10 | 9 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐾 ) 𝑥 ) = 𝑦 ) ↔ ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐿 ) 𝑥 ) = 𝑦 ) ) ) |
| 11 | 10 | ralbidva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐾 ) 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐿 ) 𝑥 ) = 𝑦 ) ) ) |
| 12 | 11 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐾 ) 𝑥 ) = 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐿 ) 𝑥 ) = 𝑦 ) ) ) ) |
| 13 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( Base ‘ 𝐾 ) ) ) |
| 14 | 1 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐾 ) 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐾 ) 𝑥 ) = 𝑦 ) ) ) |
| 15 | 13 14 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐾 ) 𝑥 ) = 𝑦 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐾 ) 𝑥 ) = 𝑦 ) ) ) ) |
| 16 | 2 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ) |
| 17 | 2 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐿 ) 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐿 ) 𝑥 ) = 𝑦 ) ) ) |
| 18 | 16 17 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐿 ) 𝑥 ) = 𝑦 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐿 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐿 ) 𝑥 ) = 𝑦 ) ) ) ) |
| 19 | 12 15 18 | 3bitr3d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐾 ) 𝑥 ) = 𝑦 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐿 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐿 ) 𝑥 ) = 𝑦 ) ) ) ) |
| 20 | 19 | iotabidv | ⊢ ( 𝜑 → ( ℩ 𝑥 ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐾 ) 𝑥 ) = 𝑦 ) ) ) = ( ℩ 𝑥 ( 𝑥 ∈ ( Base ‘ 𝐿 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐿 ) 𝑥 ) = 𝑦 ) ) ) ) |
| 21 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 22 | eqid | ⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) | |
| 23 | eqid | ⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) | |
| 24 | 21 22 23 | grpidval | ⊢ ( 0g ‘ 𝐾 ) = ( ℩ 𝑥 ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐾 ) 𝑥 ) = 𝑦 ) ) ) |
| 25 | eqid | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) | |
| 26 | eqid | ⊢ ( +g ‘ 𝐿 ) = ( +g ‘ 𝐿 ) | |
| 27 | eqid | ⊢ ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) | |
| 28 | 25 26 27 | grpidval | ⊢ ( 0g ‘ 𝐿 ) = ( ℩ 𝑥 ( 𝑥 ∈ ( Base ‘ 𝐿 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐿 ) 𝑥 ) = 𝑦 ) ) ) |
| 29 | 20 24 28 | 3eqtr4g | ⊢ ( 𝜑 → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |