This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for gsumpropd2 . (Contributed by Thierry Arnoux, 28-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumpropd2.f | |- ( ph -> F e. V ) |
|
| gsumpropd2.g | |- ( ph -> G e. W ) |
||
| gsumpropd2.h | |- ( ph -> H e. X ) |
||
| gsumpropd2.b | |- ( ph -> ( Base ` G ) = ( Base ` H ) ) |
||
| gsumpropd2.c | |- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) e. ( Base ` G ) ) |
||
| gsumpropd2.e | |- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) = ( s ( +g ` H ) t ) ) |
||
| gsumpropd2.n | |- ( ph -> Fun F ) |
||
| gsumpropd2.r | |- ( ph -> ran F C_ ( Base ` G ) ) |
||
| gsumprop2dlem.1 | |- A = ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) |
||
| gsumprop2dlem.2 | |- B = ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) |
||
| Assertion | gsumpropd2lem | |- ( ph -> ( G gsum F ) = ( H gsum F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumpropd2.f | |- ( ph -> F e. V ) |
|
| 2 | gsumpropd2.g | |- ( ph -> G e. W ) |
|
| 3 | gsumpropd2.h | |- ( ph -> H e. X ) |
|
| 4 | gsumpropd2.b | |- ( ph -> ( Base ` G ) = ( Base ` H ) ) |
|
| 5 | gsumpropd2.c | |- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) e. ( Base ` G ) ) |
|
| 6 | gsumpropd2.e | |- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) = ( s ( +g ` H ) t ) ) |
|
| 7 | gsumpropd2.n | |- ( ph -> Fun F ) |
|
| 8 | gsumpropd2.r | |- ( ph -> ran F C_ ( Base ` G ) ) |
|
| 9 | gsumprop2dlem.1 | |- A = ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) |
|
| 10 | gsumprop2dlem.2 | |- B = ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) |
|
| 11 | 4 | adantr | |- ( ( ph /\ s e. ( Base ` G ) ) -> ( Base ` G ) = ( Base ` H ) ) |
| 12 | 6 | eqeq1d | |- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( ( s ( +g ` G ) t ) = t <-> ( s ( +g ` H ) t ) = t ) ) |
| 13 | 6 | oveqrspc2v | |- ( ( ph /\ ( a e. ( Base ` G ) /\ b e. ( Base ` G ) ) ) -> ( a ( +g ` G ) b ) = ( a ( +g ` H ) b ) ) |
| 14 | 13 | oveqrspc2v | |- ( ( ph /\ ( t e. ( Base ` G ) /\ s e. ( Base ` G ) ) ) -> ( t ( +g ` G ) s ) = ( t ( +g ` H ) s ) ) |
| 15 | 14 | ancom2s | |- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( t ( +g ` G ) s ) = ( t ( +g ` H ) s ) ) |
| 16 | 15 | eqeq1d | |- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( ( t ( +g ` G ) s ) = t <-> ( t ( +g ` H ) s ) = t ) ) |
| 17 | 12 16 | anbi12d | |- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) <-> ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) ) ) |
| 18 | 17 | anassrs | |- ( ( ( ph /\ s e. ( Base ` G ) ) /\ t e. ( Base ` G ) ) -> ( ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) <-> ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) ) ) |
| 19 | 11 18 | raleqbidva | |- ( ( ph /\ s e. ( Base ` G ) ) -> ( A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) <-> A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) ) ) |
| 20 | 4 19 | rabeqbidva | |- ( ph -> { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } = { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) |
| 21 | 20 | sseq2d | |- ( ph -> ( ran F C_ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } <-> ran F C_ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) |
| 22 | eqidd | |- ( ph -> ( Base ` G ) = ( Base ` G ) ) |
|
| 23 | 22 4 6 | grpidpropd | |- ( ph -> ( 0g ` G ) = ( 0g ` H ) ) |
| 24 | simprl | |- ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) -> n e. ( ZZ>= ` m ) ) |
|
| 25 | 8 | ad2antrr | |- ( ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) /\ s e. ( m ... n ) ) -> ran F C_ ( Base ` G ) ) |
| 26 | 7 | ad2antrr | |- ( ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) /\ s e. ( m ... n ) ) -> Fun F ) |
| 27 | simpr | |- ( ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) /\ s e. ( m ... n ) ) -> s e. ( m ... n ) ) |
|
| 28 | simplrr | |- ( ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) /\ s e. ( m ... n ) ) -> dom F = ( m ... n ) ) |
|
| 29 | 27 28 | eleqtrrd | |- ( ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) /\ s e. ( m ... n ) ) -> s e. dom F ) |
| 30 | fvelrn | |- ( ( Fun F /\ s e. dom F ) -> ( F ` s ) e. ran F ) |
|
| 31 | 26 29 30 | syl2anc | |- ( ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) /\ s e. ( m ... n ) ) -> ( F ` s ) e. ran F ) |
| 32 | 25 31 | sseldd | |- ( ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) /\ s e. ( m ... n ) ) -> ( F ` s ) e. ( Base ` G ) ) |
| 33 | 5 | adantlr | |- ( ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) e. ( Base ` G ) ) |
| 34 | 6 | adantlr | |- ( ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) = ( s ( +g ` H ) t ) ) |
| 35 | 24 32 33 34 | seqfeq4 | |- ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) -> ( seq m ( ( +g ` G ) , F ) ` n ) = ( seq m ( ( +g ` H ) , F ) ` n ) ) |
| 36 | 35 | eqeq2d | |- ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) -> ( x = ( seq m ( ( +g ` G ) , F ) ` n ) <-> x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) |
| 37 | 36 | anassrs | |- ( ( ( ph /\ n e. ( ZZ>= ` m ) ) /\ dom F = ( m ... n ) ) -> ( x = ( seq m ( ( +g ` G ) , F ) ` n ) <-> x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) |
| 38 | 37 | pm5.32da | |- ( ( ph /\ n e. ( ZZ>= ` m ) ) -> ( ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) <-> ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) ) |
| 39 | 38 | rexbidva | |- ( ph -> ( E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) <-> E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) ) |
| 40 | 39 | exbidv | |- ( ph -> ( E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) <-> E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) ) |
| 41 | 40 | iotabidv | |- ( ph -> ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) ) = ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) ) |
| 42 | 20 | difeq2d | |- ( ph -> ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) = ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) |
| 43 | 42 | imaeq2d | |- ( ph -> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) = ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) |
| 44 | 43 9 10 | 3eqtr4g | |- ( ph -> A = B ) |
| 45 | 44 | fveq2d | |- ( ph -> ( # ` A ) = ( # ` B ) ) |
| 46 | 45 | fveq2d | |- ( ph -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` B ) ) ) |
| 47 | 46 | adantr | |- ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` B ) ) ) |
| 48 | simpr | |- ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) -> ( # ` B ) e. ( ZZ>= ` 1 ) ) |
|
| 49 | 8 | ad3antrrr | |- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> ran F C_ ( Base ` G ) ) |
| 50 | f1ofun | |- ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> Fun f ) |
|
| 51 | 50 | ad3antlr | |- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> Fun f ) |
| 52 | simpr | |- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> a e. ( 1 ... ( # ` B ) ) ) |
|
| 53 | f1odm | |- ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> dom f = ( 1 ... ( # ` A ) ) ) |
|
| 54 | 53 | ad3antlr | |- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> dom f = ( 1 ... ( # ` A ) ) ) |
| 55 | 45 | oveq2d | |- ( ph -> ( 1 ... ( # ` A ) ) = ( 1 ... ( # ` B ) ) ) |
| 56 | 55 | ad3antrrr | |- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> ( 1 ... ( # ` A ) ) = ( 1 ... ( # ` B ) ) ) |
| 57 | 54 56 | eqtrd | |- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> dom f = ( 1 ... ( # ` B ) ) ) |
| 58 | 52 57 | eleqtrrd | |- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> a e. dom f ) |
| 59 | fvco | |- ( ( Fun f /\ a e. dom f ) -> ( ( F o. f ) ` a ) = ( F ` ( f ` a ) ) ) |
|
| 60 | 51 58 59 | syl2anc | |- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> ( ( F o. f ) ` a ) = ( F ` ( f ` a ) ) ) |
| 61 | 7 | ad3antrrr | |- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> Fun F ) |
| 62 | difpreima | |- ( Fun F -> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) = ( ( `' F " _V ) \ ( `' F " { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) |
|
| 63 | 7 62 | syl | |- ( ph -> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) = ( ( `' F " _V ) \ ( `' F " { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) |
| 64 | 9 63 | eqtrid | |- ( ph -> A = ( ( `' F " _V ) \ ( `' F " { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) |
| 65 | difss | |- ( ( `' F " _V ) \ ( `' F " { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) C_ ( `' F " _V ) |
|
| 66 | 64 65 | eqsstrdi | |- ( ph -> A C_ ( `' F " _V ) ) |
| 67 | dfdm4 | |- dom F = ran `' F |
|
| 68 | dfrn4 | |- ran `' F = ( `' F " _V ) |
|
| 69 | 67 68 | eqtri | |- dom F = ( `' F " _V ) |
| 70 | 66 69 | sseqtrrdi | |- ( ph -> A C_ dom F ) |
| 71 | 70 | ad3antrrr | |- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> A C_ dom F ) |
| 72 | f1of | |- ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> f : ( 1 ... ( # ` A ) ) --> A ) |
|
| 73 | 72 | ad3antlr | |- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> f : ( 1 ... ( # ` A ) ) --> A ) |
| 74 | 52 56 | eleqtrrd | |- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> a e. ( 1 ... ( # ` A ) ) ) |
| 75 | 73 74 | ffvelcdmd | |- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> ( f ` a ) e. A ) |
| 76 | 71 75 | sseldd | |- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> ( f ` a ) e. dom F ) |
| 77 | fvelrn | |- ( ( Fun F /\ ( f ` a ) e. dom F ) -> ( F ` ( f ` a ) ) e. ran F ) |
|
| 78 | 61 76 77 | syl2anc | |- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> ( F ` ( f ` a ) ) e. ran F ) |
| 79 | 60 78 | eqeltrd | |- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> ( ( F o. f ) ` a ) e. ran F ) |
| 80 | 49 79 | sseldd | |- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> ( ( F o. f ) ` a ) e. ( Base ` G ) ) |
| 81 | 5 | caovclg | |- ( ( ph /\ ( a e. ( Base ` G ) /\ b e. ( Base ` G ) ) ) -> ( a ( +g ` G ) b ) e. ( Base ` G ) ) |
| 82 | 81 | ad4ant14 | |- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ ( a e. ( Base ` G ) /\ b e. ( Base ` G ) ) ) -> ( a ( +g ` G ) b ) e. ( Base ` G ) ) |
| 83 | 13 | ad4ant14 | |- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ ( a e. ( Base ` G ) /\ b e. ( Base ` G ) ) ) -> ( a ( +g ` G ) b ) = ( a ( +g ` H ) b ) ) |
| 84 | 48 80 82 83 | seqfeq4 | |- ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` B ) ) = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) |
| 85 | simpr | |- ( ( ph /\ -. ( # ` B ) e. ( ZZ>= ` 1 ) ) -> -. ( # ` B ) e. ( ZZ>= ` 1 ) ) |
|
| 86 | 1z | |- 1 e. ZZ |
|
| 87 | seqfn | |- ( 1 e. ZZ -> seq 1 ( ( +g ` G ) , ( F o. f ) ) Fn ( ZZ>= ` 1 ) ) |
|
| 88 | fndm | |- ( seq 1 ( ( +g ` G ) , ( F o. f ) ) Fn ( ZZ>= ` 1 ) -> dom seq 1 ( ( +g ` G ) , ( F o. f ) ) = ( ZZ>= ` 1 ) ) |
|
| 89 | 86 87 88 | mp2b | |- dom seq 1 ( ( +g ` G ) , ( F o. f ) ) = ( ZZ>= ` 1 ) |
| 90 | 89 | eleq2i | |- ( ( # ` B ) e. dom seq 1 ( ( +g ` G ) , ( F o. f ) ) <-> ( # ` B ) e. ( ZZ>= ` 1 ) ) |
| 91 | 85 90 | sylnibr | |- ( ( ph /\ -. ( # ` B ) e. ( ZZ>= ` 1 ) ) -> -. ( # ` B ) e. dom seq 1 ( ( +g ` G ) , ( F o. f ) ) ) |
| 92 | ndmfv | |- ( -. ( # ` B ) e. dom seq 1 ( ( +g ` G ) , ( F o. f ) ) -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` B ) ) = (/) ) |
|
| 93 | 91 92 | syl | |- ( ( ph /\ -. ( # ` B ) e. ( ZZ>= ` 1 ) ) -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` B ) ) = (/) ) |
| 94 | seqfn | |- ( 1 e. ZZ -> seq 1 ( ( +g ` H ) , ( F o. f ) ) Fn ( ZZ>= ` 1 ) ) |
|
| 95 | fndm | |- ( seq 1 ( ( +g ` H ) , ( F o. f ) ) Fn ( ZZ>= ` 1 ) -> dom seq 1 ( ( +g ` H ) , ( F o. f ) ) = ( ZZ>= ` 1 ) ) |
|
| 96 | 86 94 95 | mp2b | |- dom seq 1 ( ( +g ` H ) , ( F o. f ) ) = ( ZZ>= ` 1 ) |
| 97 | 96 | eleq2i | |- ( ( # ` B ) e. dom seq 1 ( ( +g ` H ) , ( F o. f ) ) <-> ( # ` B ) e. ( ZZ>= ` 1 ) ) |
| 98 | 85 97 | sylnibr | |- ( ( ph /\ -. ( # ` B ) e. ( ZZ>= ` 1 ) ) -> -. ( # ` B ) e. dom seq 1 ( ( +g ` H ) , ( F o. f ) ) ) |
| 99 | ndmfv | |- ( -. ( # ` B ) e. dom seq 1 ( ( +g ` H ) , ( F o. f ) ) -> ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) = (/) ) |
|
| 100 | 98 99 | syl | |- ( ( ph /\ -. ( # ` B ) e. ( ZZ>= ` 1 ) ) -> ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) = (/) ) |
| 101 | 93 100 | eqtr4d | |- ( ( ph /\ -. ( # ` B ) e. ( ZZ>= ` 1 ) ) -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` B ) ) = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) |
| 102 | 101 | adantlr | |- ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ -. ( # ` B ) e. ( ZZ>= ` 1 ) ) -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` B ) ) = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) |
| 103 | 84 102 | pm2.61dan | |- ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` B ) ) = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) |
| 104 | 47 103 | eqtrd | |- ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) |
| 105 | 104 | eqeq2d | |- ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) <-> x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) ) |
| 106 | 105 | pm5.32da | |- ( ph -> ( ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) ) <-> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) ) ) |
| 107 | 55 | f1oeq2d | |- ( ph -> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A <-> f : ( 1 ... ( # ` B ) ) -1-1-onto-> A ) ) |
| 108 | 44 | f1oeq3d | |- ( ph -> ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> A <-> f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) |
| 109 | 107 108 | bitrd | |- ( ph -> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A <-> f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) |
| 110 | 109 | anbi1d | |- ( ph -> ( ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) <-> ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) ) ) |
| 111 | 106 110 | bitrd | |- ( ph -> ( ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) ) <-> ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) ) ) |
| 112 | 111 | exbidv | |- ( ph -> ( E. f ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) ) <-> E. f ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) ) ) |
| 113 | 112 | iotabidv | |- ( ph -> ( iota x E. f ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) ) ) = ( iota x E. f ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) ) ) |
| 114 | 41 113 | ifeq12d | |- ( ph -> if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) ) ) ) = if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) ) ) ) |
| 115 | 21 23 114 | ifbieq12d | |- ( ph -> if ( ran F C_ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } , ( 0g ` G ) , if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) ) ) ) ) = if ( ran F C_ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } , ( 0g ` H ) , if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) ) ) ) ) |
| 116 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 117 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 118 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 119 | eqid | |- { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } = { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } |
|
| 120 | 9 | a1i | |- ( ph -> A = ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) |
| 121 | eqidd | |- ( ph -> dom F = dom F ) |
|
| 122 | 116 117 118 119 120 2 1 121 | gsumvalx | |- ( ph -> ( G gsum F ) = if ( ran F C_ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } , ( 0g ` G ) , if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) ) ) ) ) ) |
| 123 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 124 | eqid | |- ( 0g ` H ) = ( 0g ` H ) |
|
| 125 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 126 | eqid | |- { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } = { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } |
|
| 127 | 10 | a1i | |- ( ph -> B = ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) |
| 128 | 123 124 125 126 127 3 1 121 | gsumvalx | |- ( ph -> ( H gsum F ) = if ( ran F C_ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } , ( 0g ` H ) , if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) ) ) ) ) |
| 129 | 115 122 128 | 3eqtr4d | |- ( ph -> ( G gsum F ) = ( H gsum F ) ) |