This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A stronger version of gsumpropd , working for magma, where only the closure of the addition operation on a common base is required, see gsummgmpropd . (Contributed by Thierry Arnoux, 28-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumpropd2.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| gsumpropd2.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | ||
| gsumpropd2.h | ⊢ ( 𝜑 → 𝐻 ∈ 𝑋 ) | ||
| gsumpropd2.b | ⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) ) | ||
| gsumpropd2.c | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) ∈ ( Base ‘ 𝐺 ) ) | ||
| gsumpropd2.e | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) ) | ||
| gsumpropd2.n | ⊢ ( 𝜑 → Fun 𝐹 ) | ||
| gsumpropd2.r | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( Base ‘ 𝐺 ) ) | ||
| Assertion | gsumpropd2 | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐻 Σg 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumpropd2.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 2 | gsumpropd2.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | |
| 3 | gsumpropd2.h | ⊢ ( 𝜑 → 𝐻 ∈ 𝑋 ) | |
| 4 | gsumpropd2.b | ⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) ) | |
| 5 | gsumpropd2.c | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) ∈ ( Base ‘ 𝐺 ) ) | |
| 6 | gsumpropd2.e | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) ) | |
| 7 | gsumpropd2.n | ⊢ ( 𝜑 → Fun 𝐹 ) | |
| 8 | gsumpropd2.r | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( Base ‘ 𝐺 ) ) | |
| 9 | eqid | ⊢ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) = ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) | |
| 10 | eqid | ⊢ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) = ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) | |
| 11 | 1 2 3 4 5 6 7 8 9 10 | gsumpropd2lem | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐻 Σg 𝐹 ) ) |