This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expand out the substitutions in df-gsum . (Contributed by Mario Carneiro, 18-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumval.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsumval.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| gsumval.o | ⊢ 𝑂 = { 𝑠 ∈ 𝐵 ∣ ∀ 𝑡 ∈ 𝐵 ( ( 𝑠 + 𝑡 ) = 𝑡 ∧ ( 𝑡 + 𝑠 ) = 𝑡 ) } | ||
| gsumval.w | ⊢ ( 𝜑 → 𝑊 = ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ) | ||
| gsumval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | ||
| gsumvalx.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑋 ) | ||
| gsumvalx.a | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) | ||
| Assertion | gsumvalx | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = if ( ran 𝐹 ⊆ 𝑂 , 0 , if ( 𝐴 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumval.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsumval.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | gsumval.o | ⊢ 𝑂 = { 𝑠 ∈ 𝐵 ∣ ∀ 𝑡 ∈ 𝐵 ( ( 𝑠 + 𝑡 ) = 𝑡 ∧ ( 𝑡 + 𝑠 ) = 𝑡 ) } | |
| 5 | gsumval.w | ⊢ ( 𝜑 → 𝑊 = ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ) | |
| 6 | gsumval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | |
| 7 | gsumvalx.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑋 ) | |
| 8 | gsumvalx.a | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) | |
| 9 | df-gsum | ⊢ Σg = ( 𝑤 ∈ V , 𝑔 ∈ V ↦ ⦋ { 𝑥 ∈ ( Base ‘ 𝑤 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑤 ) 𝑥 ) = 𝑦 ) } / 𝑜 ⦌ if ( ran 𝑔 ⊆ 𝑜 , ( 0g ‘ 𝑤 ) , if ( dom 𝑔 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝑔 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 [ ( ◡ 𝑔 “ ( V ∖ 𝑜 ) ) / 𝑦 ] ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) ) ) | |
| 10 | 9 | a1i | ⊢ ( 𝜑 → Σg = ( 𝑤 ∈ V , 𝑔 ∈ V ↦ ⦋ { 𝑥 ∈ ( Base ‘ 𝑤 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑤 ) 𝑥 ) = 𝑦 ) } / 𝑜 ⦌ if ( ran 𝑔 ⊆ 𝑜 , ( 0g ‘ 𝑤 ) , if ( dom 𝑔 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝑔 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 [ ( ◡ 𝑔 “ ( V ∖ 𝑜 ) ) / 𝑦 ] ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) ) ) ) |
| 11 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → 𝑤 = 𝐺 ) | |
| 12 | 11 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → ( Base ‘ 𝑤 ) = ( Base ‘ 𝐺 ) ) |
| 13 | 12 1 | eqtr4di | ⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → ( Base ‘ 𝑤 ) = 𝐵 ) |
| 14 | 11 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → ( +g ‘ 𝑤 ) = ( +g ‘ 𝐺 ) ) |
| 15 | 14 3 | eqtr4di | ⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → ( +g ‘ 𝑤 ) = + ) |
| 16 | 15 | oveqd | ⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
| 17 | 16 | eqeq1d | ⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → ( ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) = 𝑦 ↔ ( 𝑥 + 𝑦 ) = 𝑦 ) ) |
| 18 | 15 | oveqd | ⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → ( 𝑦 ( +g ‘ 𝑤 ) 𝑥 ) = ( 𝑦 + 𝑥 ) ) |
| 19 | 18 | eqeq1d | ⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → ( ( 𝑦 ( +g ‘ 𝑤 ) 𝑥 ) = 𝑦 ↔ ( 𝑦 + 𝑥 ) = 𝑦 ) ) |
| 20 | 17 19 | anbi12d | ⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → ( ( ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑤 ) 𝑥 ) = 𝑦 ) ↔ ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) ) |
| 21 | 13 20 | raleqbidv | ⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑤 ) 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) ) |
| 22 | 13 21 | rabeqbidv | ⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → { 𝑥 ∈ ( Base ‘ 𝑤 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑤 ) 𝑥 ) = 𝑦 ) } = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) |
| 23 | oveq2 | ⊢ ( 𝑡 = 𝑦 → ( 𝑠 + 𝑡 ) = ( 𝑠 + 𝑦 ) ) | |
| 24 | id | ⊢ ( 𝑡 = 𝑦 → 𝑡 = 𝑦 ) | |
| 25 | 23 24 | eqeq12d | ⊢ ( 𝑡 = 𝑦 → ( ( 𝑠 + 𝑡 ) = 𝑡 ↔ ( 𝑠 + 𝑦 ) = 𝑦 ) ) |
| 26 | oveq1 | ⊢ ( 𝑡 = 𝑦 → ( 𝑡 + 𝑠 ) = ( 𝑦 + 𝑠 ) ) | |
| 27 | 26 24 | eqeq12d | ⊢ ( 𝑡 = 𝑦 → ( ( 𝑡 + 𝑠 ) = 𝑡 ↔ ( 𝑦 + 𝑠 ) = 𝑦 ) ) |
| 28 | 25 27 | anbi12d | ⊢ ( 𝑡 = 𝑦 → ( ( ( 𝑠 + 𝑡 ) = 𝑡 ∧ ( 𝑡 + 𝑠 ) = 𝑡 ) ↔ ( ( 𝑠 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑠 ) = 𝑦 ) ) ) |
| 29 | 28 | cbvralvw | ⊢ ( ∀ 𝑡 ∈ 𝐵 ( ( 𝑠 + 𝑡 ) = 𝑡 ∧ ( 𝑡 + 𝑠 ) = 𝑡 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝑠 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑠 ) = 𝑦 ) ) |
| 30 | oveq1 | ⊢ ( 𝑠 = 𝑥 → ( 𝑠 + 𝑦 ) = ( 𝑥 + 𝑦 ) ) | |
| 31 | 30 | eqeq1d | ⊢ ( 𝑠 = 𝑥 → ( ( 𝑠 + 𝑦 ) = 𝑦 ↔ ( 𝑥 + 𝑦 ) = 𝑦 ) ) |
| 32 | 31 | ovanraleqv | ⊢ ( 𝑠 = 𝑥 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑠 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑠 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) ) |
| 33 | 29 32 | bitrid | ⊢ ( 𝑠 = 𝑥 → ( ∀ 𝑡 ∈ 𝐵 ( ( 𝑠 + 𝑡 ) = 𝑡 ∧ ( 𝑡 + 𝑠 ) = 𝑡 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) ) |
| 34 | 33 | cbvrabv | ⊢ { 𝑠 ∈ 𝐵 ∣ ∀ 𝑡 ∈ 𝐵 ( ( 𝑠 + 𝑡 ) = 𝑡 ∧ ( 𝑡 + 𝑠 ) = 𝑡 ) } = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } |
| 35 | 4 34 | eqtri | ⊢ 𝑂 = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } |
| 36 | 22 35 | eqtr4di | ⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → { 𝑥 ∈ ( Base ‘ 𝑤 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑤 ) 𝑥 ) = 𝑦 ) } = 𝑂 ) |
| 37 | 36 | csbeq1d | ⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → ⦋ { 𝑥 ∈ ( Base ‘ 𝑤 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑤 ) 𝑥 ) = 𝑦 ) } / 𝑜 ⦌ if ( ran 𝑔 ⊆ 𝑜 , ( 0g ‘ 𝑤 ) , if ( dom 𝑔 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝑔 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 [ ( ◡ 𝑔 “ ( V ∖ 𝑜 ) ) / 𝑦 ] ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) ) = ⦋ 𝑂 / 𝑜 ⦌ if ( ran 𝑔 ⊆ 𝑜 , ( 0g ‘ 𝑤 ) , if ( dom 𝑔 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝑔 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 [ ( ◡ 𝑔 “ ( V ∖ 𝑜 ) ) / 𝑦 ] ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) ) ) |
| 38 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 39 | 4 38 | rabex2 | ⊢ 𝑂 ∈ V |
| 40 | 39 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → 𝑂 ∈ V ) |
| 41 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → 𝑔 = 𝐹 ) | |
| 42 | 41 | rneqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ran 𝑔 = ran 𝐹 ) |
| 43 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → 𝑜 = 𝑂 ) | |
| 44 | 42 43 | sseq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( ran 𝑔 ⊆ 𝑜 ↔ ran 𝐹 ⊆ 𝑂 ) ) |
| 45 | 11 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → 𝑤 = 𝐺 ) |
| 46 | 45 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( 0g ‘ 𝑤 ) = ( 0g ‘ 𝐺 ) ) |
| 47 | 46 2 | eqtr4di | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( 0g ‘ 𝑤 ) = 0 ) |
| 48 | 41 | dmeqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → dom 𝑔 = dom 𝐹 ) |
| 49 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → dom 𝐹 = 𝐴 ) |
| 50 | 48 49 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → dom 𝑔 = 𝐴 ) |
| 51 | 50 | eleq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( dom 𝑔 ∈ ran ... ↔ 𝐴 ∈ ran ... ) ) |
| 52 | 50 | eqeq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( dom 𝑔 = ( 𝑚 ... 𝑛 ) ↔ 𝐴 = ( 𝑚 ... 𝑛 ) ) ) |
| 53 | 15 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( +g ‘ 𝑤 ) = + ) |
| 54 | 53 | seqeq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) = seq 𝑚 ( + , 𝑔 ) ) |
| 55 | 41 | seqeq3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → seq 𝑚 ( + , 𝑔 ) = seq 𝑚 ( + , 𝐹 ) ) |
| 56 | 54 55 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) = seq 𝑚 ( + , 𝐹 ) ) |
| 57 | 56 | fveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) ‘ 𝑛 ) = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) |
| 58 | 57 | eqeq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) ‘ 𝑛 ) ↔ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) |
| 59 | 52 58 | anbi12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( ( dom 𝑔 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) ‘ 𝑛 ) ) ↔ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 60 | 59 | rexbidv | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝑔 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) ‘ 𝑛 ) ) ↔ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 61 | 60 | exbidv | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝑔 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) ‘ 𝑛 ) ) ↔ ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 62 | 61 | iotabidv | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝑔 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) ‘ 𝑛 ) ) ) = ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 63 | 43 | difeq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( V ∖ 𝑜 ) = ( V ∖ 𝑂 ) ) |
| 64 | 63 | imaeq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( ◡ 𝐹 “ ( V ∖ 𝑜 ) ) = ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ) |
| 65 | 41 | cnveqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ◡ 𝑔 = ◡ 𝐹 ) |
| 66 | 65 | imaeq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( ◡ 𝑔 “ ( V ∖ 𝑜 ) ) = ( ◡ 𝐹 “ ( V ∖ 𝑜 ) ) ) |
| 67 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → 𝑊 = ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ) |
| 68 | 64 66 67 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( ◡ 𝑔 “ ( V ∖ 𝑜 ) ) = 𝑊 ) |
| 69 | 68 | sbceq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( [ ( ◡ 𝑔 “ ( V ∖ 𝑜 ) ) / 𝑦 ] ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ↔ [ 𝑊 / 𝑦 ] ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) |
| 70 | cnvexg | ⊢ ( 𝐹 ∈ 𝑋 → ◡ 𝐹 ∈ V ) | |
| 71 | imaexg | ⊢ ( ◡ 𝐹 ∈ V → ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ∈ V ) | |
| 72 | 7 70 71 | 3syl | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ∈ V ) |
| 73 | 5 72 | eqeltrd | ⊢ ( 𝜑 → 𝑊 ∈ V ) |
| 74 | 73 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → 𝑊 ∈ V ) |
| 75 | fveq2 | ⊢ ( 𝑦 = 𝑊 → ( ♯ ‘ 𝑦 ) = ( ♯ ‘ 𝑊 ) ) | |
| 76 | 75 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) ∧ 𝑦 = 𝑊 ) → ( ♯ ‘ 𝑦 ) = ( ♯ ‘ 𝑊 ) ) |
| 77 | 76 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) ∧ 𝑦 = 𝑊 ) → ( 1 ... ( ♯ ‘ 𝑦 ) ) = ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
| 78 | 77 | f1oeq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) ∧ 𝑦 = 𝑊 ) → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ↔ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑦 ) ) |
| 79 | f1oeq3 | ⊢ ( 𝑦 = 𝑊 → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑦 ↔ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) | |
| 80 | 79 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) ∧ 𝑦 = 𝑊 ) → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑦 ↔ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) |
| 81 | 78 80 | bitrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) ∧ 𝑦 = 𝑊 ) → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ↔ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) |
| 82 | 53 | seqeq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) = seq 1 ( + , ( 𝑔 ∘ 𝑓 ) ) ) |
| 83 | 41 | coeq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( 𝑔 ∘ 𝑓 ) = ( 𝐹 ∘ 𝑓 ) ) |
| 84 | 83 | seqeq3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → seq 1 ( + , ( 𝑔 ∘ 𝑓 ) ) = seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ) |
| 85 | 82 84 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) = seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ) |
| 86 | 85 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) ∧ 𝑦 = 𝑊 ) → seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) = seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ) |
| 87 | 86 76 | fveq12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) ∧ 𝑦 = 𝑊 ) → ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) |
| 88 | 87 | eqeq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) ∧ 𝑦 = 𝑊 ) → ( 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ↔ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) |
| 89 | 81 88 | anbi12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) ∧ 𝑦 = 𝑊 ) → ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ↔ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 90 | 74 89 | sbcied | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( [ 𝑊 / 𝑦 ] ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ↔ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 91 | 69 90 | bitrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( [ ( ◡ 𝑔 “ ( V ∖ 𝑜 ) ) / 𝑦 ] ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ↔ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 92 | 91 | exbidv | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( ∃ 𝑓 [ ( ◡ 𝑔 “ ( V ∖ 𝑜 ) ) / 𝑦 ] ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 93 | 92 | iotabidv | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( ℩ 𝑥 ∃ 𝑓 [ ( ◡ 𝑔 “ ( V ∖ 𝑜 ) ) / 𝑦 ] ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ) = ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 94 | 51 62 93 | ifbieq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → if ( dom 𝑔 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝑔 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 [ ( ◡ 𝑔 “ ( V ∖ 𝑜 ) ) / 𝑦 ] ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) = if ( 𝐴 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
| 95 | 44 47 94 | ifbieq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → if ( ran 𝑔 ⊆ 𝑜 , ( 0g ‘ 𝑤 ) , if ( dom 𝑔 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝑔 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 [ ( ◡ 𝑔 “ ( V ∖ 𝑜 ) ) / 𝑦 ] ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) ) = if ( ran 𝐹 ⊆ 𝑂 , 0 , if ( 𝐴 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) ) ) |
| 96 | 40 95 | csbied | ⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → ⦋ 𝑂 / 𝑜 ⦌ if ( ran 𝑔 ⊆ 𝑜 , ( 0g ‘ 𝑤 ) , if ( dom 𝑔 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝑔 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 [ ( ◡ 𝑔 “ ( V ∖ 𝑜 ) ) / 𝑦 ] ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) ) = if ( ran 𝐹 ⊆ 𝑂 , 0 , if ( 𝐴 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) ) ) |
| 97 | 37 96 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → ⦋ { 𝑥 ∈ ( Base ‘ 𝑤 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑤 ) 𝑥 ) = 𝑦 ) } / 𝑜 ⦌ if ( ran 𝑔 ⊆ 𝑜 , ( 0g ‘ 𝑤 ) , if ( dom 𝑔 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝑔 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 [ ( ◡ 𝑔 “ ( V ∖ 𝑜 ) ) / 𝑦 ] ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) ) = if ( ran 𝐹 ⊆ 𝑂 , 0 , if ( 𝐴 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) ) ) |
| 98 | 6 | elexd | ⊢ ( 𝜑 → 𝐺 ∈ V ) |
| 99 | 7 | elexd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 100 | 2 | fvexi | ⊢ 0 ∈ V |
| 101 | iotaex | ⊢ ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) ∈ V | |
| 102 | iotaex | ⊢ ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ∈ V | |
| 103 | 101 102 | ifex | ⊢ if ( 𝐴 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) ∈ V |
| 104 | 100 103 | ifex | ⊢ if ( ran 𝐹 ⊆ 𝑂 , 0 , if ( 𝐴 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) ) ∈ V |
| 105 | 104 | a1i | ⊢ ( 𝜑 → if ( ran 𝐹 ⊆ 𝑂 , 0 , if ( 𝐴 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) ) ∈ V ) |
| 106 | 10 97 98 99 105 | ovmpod | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = if ( ran 𝐹 ⊆ 𝑂 , 0 , if ( 𝐴 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) ) ) |