This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer a transitivity law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caofref.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| caofref.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | ||
| caofcom.3 | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝑆 ) | ||
| caofass.4 | ⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝑆 ) | ||
| caoftrn.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑇 𝑧 ) → 𝑥 𝑈 𝑧 ) ) | ||
| Assertion | caoftrn | ⊢ ( 𝜑 → ( ( 𝐹 ∘r 𝑅 𝐺 ∧ 𝐺 ∘r 𝑇 𝐻 ) → 𝐹 ∘r 𝑈 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofref.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | caofref.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | |
| 3 | caofcom.3 | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝑆 ) | |
| 4 | caofass.4 | ⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝑆 ) | |
| 5 | caoftrn.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑇 𝑧 ) → 𝑥 𝑈 𝑧 ) ) | |
| 6 | 5 | ralrimivvva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑇 𝑧 ) → 𝑥 𝑈 𝑧 ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑇 𝑧 ) → 𝑥 𝑈 𝑧 ) ) |
| 8 | 2 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝑆 ) |
| 9 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑤 ) ∈ 𝑆 ) |
| 10 | 4 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑤 ) ∈ 𝑆 ) |
| 11 | breq1 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( 𝑥 𝑅 𝑦 ↔ ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ) ) | |
| 12 | 11 | anbi1d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑇 𝑧 ) ↔ ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ∧ 𝑦 𝑇 𝑧 ) ) ) |
| 13 | breq1 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( 𝑥 𝑈 𝑧 ↔ ( 𝐹 ‘ 𝑤 ) 𝑈 𝑧 ) ) | |
| 14 | 12 13 | imbi12d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑇 𝑧 ) → 𝑥 𝑈 𝑧 ) ↔ ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ∧ 𝑦 𝑇 𝑧 ) → ( 𝐹 ‘ 𝑤 ) 𝑈 𝑧 ) ) ) |
| 15 | breq2 | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ↔ ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) ) | |
| 16 | breq1 | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( 𝑦 𝑇 𝑧 ↔ ( 𝐺 ‘ 𝑤 ) 𝑇 𝑧 ) ) | |
| 17 | 15 16 | anbi12d | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ∧ 𝑦 𝑇 𝑧 ) ↔ ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ∧ ( 𝐺 ‘ 𝑤 ) 𝑇 𝑧 ) ) ) |
| 18 | 17 | imbi1d | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ∧ 𝑦 𝑇 𝑧 ) → ( 𝐹 ‘ 𝑤 ) 𝑈 𝑧 ) ↔ ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ∧ ( 𝐺 ‘ 𝑤 ) 𝑇 𝑧 ) → ( 𝐹 ‘ 𝑤 ) 𝑈 𝑧 ) ) ) |
| 19 | breq2 | ⊢ ( 𝑧 = ( 𝐻 ‘ 𝑤 ) → ( ( 𝐺 ‘ 𝑤 ) 𝑇 𝑧 ↔ ( 𝐺 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) | |
| 20 | 19 | anbi2d | ⊢ ( 𝑧 = ( 𝐻 ‘ 𝑤 ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ∧ ( 𝐺 ‘ 𝑤 ) 𝑇 𝑧 ) ↔ ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ∧ ( 𝐺 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 21 | breq2 | ⊢ ( 𝑧 = ( 𝐻 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑤 ) 𝑈 𝑧 ↔ ( 𝐹 ‘ 𝑤 ) 𝑈 ( 𝐻 ‘ 𝑤 ) ) ) | |
| 22 | 20 21 | imbi12d | ⊢ ( 𝑧 = ( 𝐻 ‘ 𝑤 ) → ( ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ∧ ( 𝐺 ‘ 𝑤 ) 𝑇 𝑧 ) → ( 𝐹 ‘ 𝑤 ) 𝑈 𝑧 ) ↔ ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ∧ ( 𝐺 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) → ( 𝐹 ‘ 𝑤 ) 𝑈 ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 23 | 14 18 22 | rspc3v | ⊢ ( ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑆 ∧ ( 𝐺 ‘ 𝑤 ) ∈ 𝑆 ∧ ( 𝐻 ‘ 𝑤 ) ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑇 𝑧 ) → 𝑥 𝑈 𝑧 ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ∧ ( 𝐺 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) → ( 𝐹 ‘ 𝑤 ) 𝑈 ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 24 | 8 9 10 23 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑇 𝑧 ) → 𝑥 𝑈 𝑧 ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ∧ ( 𝐺 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) → ( 𝐹 ‘ 𝑤 ) 𝑈 ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 25 | 7 24 | mpd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ∧ ( 𝐺 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) → ( 𝐹 ‘ 𝑤 ) 𝑈 ( 𝐻 ‘ 𝑤 ) ) ) |
| 26 | 25 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ∧ ( 𝐺 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) → ∀ 𝑤 ∈ 𝐴 ( 𝐹 ‘ 𝑤 ) 𝑈 ( 𝐻 ‘ 𝑤 ) ) ) |
| 27 | 2 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 28 | 3 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
| 29 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
| 30 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 31 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) | |
| 32 | 27 28 1 1 29 30 31 | ofrfval | ⊢ ( 𝜑 → ( 𝐹 ∘r 𝑅 𝐺 ↔ ∀ 𝑤 ∈ 𝐴 ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) ) |
| 33 | 4 | ffnd | ⊢ ( 𝜑 → 𝐻 Fn 𝐴 ) |
| 34 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑤 ) = ( 𝐻 ‘ 𝑤 ) ) | |
| 35 | 28 33 1 1 29 31 34 | ofrfval | ⊢ ( 𝜑 → ( 𝐺 ∘r 𝑇 𝐻 ↔ ∀ 𝑤 ∈ 𝐴 ( 𝐺 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) |
| 36 | 32 35 | anbi12d | ⊢ ( 𝜑 → ( ( 𝐹 ∘r 𝑅 𝐺 ∧ 𝐺 ∘r 𝑇 𝐻 ) ↔ ( ∀ 𝑤 ∈ 𝐴 ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝐺 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 37 | r19.26 | ⊢ ( ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ∧ ( 𝐺 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ↔ ( ∀ 𝑤 ∈ 𝐴 ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝐺 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) | |
| 38 | 36 37 | bitr4di | ⊢ ( 𝜑 → ( ( 𝐹 ∘r 𝑅 𝐺 ∧ 𝐺 ∘r 𝑇 𝐻 ) ↔ ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ∧ ( 𝐺 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 39 | 27 33 1 1 29 30 34 | ofrfval | ⊢ ( 𝜑 → ( 𝐹 ∘r 𝑈 𝐻 ↔ ∀ 𝑤 ∈ 𝐴 ( 𝐹 ‘ 𝑤 ) 𝑈 ( 𝐻 ‘ 𝑤 ) ) ) |
| 40 | 26 38 39 | 3imtr4d | ⊢ ( 𝜑 → ( ( 𝐹 ∘r 𝑅 𝐺 ∧ 𝐺 ∘r 𝑇 𝐻 ) → 𝐹 ∘r 𝑈 𝐻 ) ) |