This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of all elements of finite order forms a subgroup of any abelian group, called the torsion subgroup. (Contributed by Mario Carneiro, 20-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | torsubg.1 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| Assertion | torsubg | ⊢ ( 𝐺 ∈ Abel → ( ◡ 𝑂 “ ℕ ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | torsubg.1 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 2 | cnvimass | ⊢ ( ◡ 𝑂 “ ℕ ) ⊆ dom 𝑂 | |
| 3 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 4 | 3 1 | odf | ⊢ 𝑂 : ( Base ‘ 𝐺 ) ⟶ ℕ0 |
| 5 | 4 | fdmi | ⊢ dom 𝑂 = ( Base ‘ 𝐺 ) |
| 6 | 2 5 | sseqtri | ⊢ ( ◡ 𝑂 “ ℕ ) ⊆ ( Base ‘ 𝐺 ) |
| 7 | 6 | a1i | ⊢ ( 𝐺 ∈ Abel → ( ◡ 𝑂 “ ℕ ) ⊆ ( Base ‘ 𝐺 ) ) |
| 8 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 9 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 10 | 3 9 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 11 | 8 10 | syl | ⊢ ( 𝐺 ∈ Abel → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 12 | 1 9 | od1 | ⊢ ( 𝐺 ∈ Grp → ( 𝑂 ‘ ( 0g ‘ 𝐺 ) ) = 1 ) |
| 13 | 8 12 | syl | ⊢ ( 𝐺 ∈ Abel → ( 𝑂 ‘ ( 0g ‘ 𝐺 ) ) = 1 ) |
| 14 | 1nn | ⊢ 1 ∈ ℕ | |
| 15 | 13 14 | eqeltrdi | ⊢ ( 𝐺 ∈ Abel → ( 𝑂 ‘ ( 0g ‘ 𝐺 ) ) ∈ ℕ ) |
| 16 | ffn | ⊢ ( 𝑂 : ( Base ‘ 𝐺 ) ⟶ ℕ0 → 𝑂 Fn ( Base ‘ 𝐺 ) ) | |
| 17 | 4 16 | ax-mp | ⊢ 𝑂 Fn ( Base ‘ 𝐺 ) |
| 18 | elpreima | ⊢ ( 𝑂 Fn ( Base ‘ 𝐺 ) → ( ( 0g ‘ 𝐺 ) ∈ ( ◡ 𝑂 “ ℕ ) ↔ ( ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑂 ‘ ( 0g ‘ 𝐺 ) ) ∈ ℕ ) ) ) | |
| 19 | 17 18 | ax-mp | ⊢ ( ( 0g ‘ 𝐺 ) ∈ ( ◡ 𝑂 “ ℕ ) ↔ ( ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑂 ‘ ( 0g ‘ 𝐺 ) ) ∈ ℕ ) ) |
| 20 | 11 15 19 | sylanbrc | ⊢ ( 𝐺 ∈ Abel → ( 0g ‘ 𝐺 ) ∈ ( ◡ 𝑂 “ ℕ ) ) |
| 21 | 20 | ne0d | ⊢ ( 𝐺 ∈ Abel → ( ◡ 𝑂 “ ℕ ) ≠ ∅ ) |
| 22 | 8 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → 𝐺 ∈ Grp ) |
| 23 | 6 | sseli | ⊢ ( 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 24 | 23 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 25 | 6 | sseli | ⊢ ( 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
| 26 | 25 | adantl | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
| 27 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 28 | 3 27 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 29 | 22 24 26 28 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 30 | 0nnn | ⊢ ¬ 0 ∈ ℕ | |
| 31 | 3 1 | odcl | ⊢ ( 𝑥 ∈ ( Base ‘ 𝐺 ) → ( 𝑂 ‘ 𝑥 ) ∈ ℕ0 ) |
| 32 | 24 31 | syl | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( 𝑂 ‘ 𝑥 ) ∈ ℕ0 ) |
| 33 | 32 | nn0zd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( 𝑂 ‘ 𝑥 ) ∈ ℤ ) |
| 34 | 3 1 | odcl | ⊢ ( 𝑦 ∈ ( Base ‘ 𝐺 ) → ( 𝑂 ‘ 𝑦 ) ∈ ℕ0 ) |
| 35 | 26 34 | syl | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( 𝑂 ‘ 𝑦 ) ∈ ℕ0 ) |
| 36 | 35 | nn0zd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( 𝑂 ‘ 𝑦 ) ∈ ℤ ) |
| 37 | 33 36 | gcdcld | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( ( 𝑂 ‘ 𝑥 ) gcd ( 𝑂 ‘ 𝑦 ) ) ∈ ℕ0 ) |
| 38 | 37 | nn0cnd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( ( 𝑂 ‘ 𝑥 ) gcd ( 𝑂 ‘ 𝑦 ) ) ∈ ℂ ) |
| 39 | 38 | mul02d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( 0 · ( ( 𝑂 ‘ 𝑥 ) gcd ( 𝑂 ‘ 𝑦 ) ) ) = 0 ) |
| 40 | 39 | breq1d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( ( 0 · ( ( 𝑂 ‘ 𝑥 ) gcd ( 𝑂 ‘ 𝑦 ) ) ) ∥ ( ( 𝑂 ‘ 𝑥 ) · ( 𝑂 ‘ 𝑦 ) ) ↔ 0 ∥ ( ( 𝑂 ‘ 𝑥 ) · ( 𝑂 ‘ 𝑦 ) ) ) ) |
| 41 | 33 36 | zmulcld | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( ( 𝑂 ‘ 𝑥 ) · ( 𝑂 ‘ 𝑦 ) ) ∈ ℤ ) |
| 42 | 0dvds | ⊢ ( ( ( 𝑂 ‘ 𝑥 ) · ( 𝑂 ‘ 𝑦 ) ) ∈ ℤ → ( 0 ∥ ( ( 𝑂 ‘ 𝑥 ) · ( 𝑂 ‘ 𝑦 ) ) ↔ ( ( 𝑂 ‘ 𝑥 ) · ( 𝑂 ‘ 𝑦 ) ) = 0 ) ) | |
| 43 | 41 42 | syl | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( 0 ∥ ( ( 𝑂 ‘ 𝑥 ) · ( 𝑂 ‘ 𝑦 ) ) ↔ ( ( 𝑂 ‘ 𝑥 ) · ( 𝑂 ‘ 𝑦 ) ) = 0 ) ) |
| 44 | 40 43 | bitrd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( ( 0 · ( ( 𝑂 ‘ 𝑥 ) gcd ( 𝑂 ‘ 𝑦 ) ) ) ∥ ( ( 𝑂 ‘ 𝑥 ) · ( 𝑂 ‘ 𝑦 ) ) ↔ ( ( 𝑂 ‘ 𝑥 ) · ( 𝑂 ‘ 𝑦 ) ) = 0 ) ) |
| 45 | elpreima | ⊢ ( 𝑂 Fn ( Base ‘ 𝐺 ) → ( 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑂 ‘ 𝑥 ) ∈ ℕ ) ) ) | |
| 46 | 17 45 | ax-mp | ⊢ ( 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑂 ‘ 𝑥 ) ∈ ℕ ) ) |
| 47 | 46 | simprbi | ⊢ ( 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) → ( 𝑂 ‘ 𝑥 ) ∈ ℕ ) |
| 48 | 47 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( 𝑂 ‘ 𝑥 ) ∈ ℕ ) |
| 49 | elpreima | ⊢ ( 𝑂 Fn ( Base ‘ 𝐺 ) → ( 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ↔ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑂 ‘ 𝑦 ) ∈ ℕ ) ) ) | |
| 50 | 17 49 | ax-mp | ⊢ ( 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ↔ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑂 ‘ 𝑦 ) ∈ ℕ ) ) |
| 51 | 50 | simprbi | ⊢ ( 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) → ( 𝑂 ‘ 𝑦 ) ∈ ℕ ) |
| 52 | 51 | adantl | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( 𝑂 ‘ 𝑦 ) ∈ ℕ ) |
| 53 | 48 52 | nnmulcld | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( ( 𝑂 ‘ 𝑥 ) · ( 𝑂 ‘ 𝑦 ) ) ∈ ℕ ) |
| 54 | eleq1 | ⊢ ( ( ( 𝑂 ‘ 𝑥 ) · ( 𝑂 ‘ 𝑦 ) ) = 0 → ( ( ( 𝑂 ‘ 𝑥 ) · ( 𝑂 ‘ 𝑦 ) ) ∈ ℕ ↔ 0 ∈ ℕ ) ) | |
| 55 | 53 54 | syl5ibcom | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( ( ( 𝑂 ‘ 𝑥 ) · ( 𝑂 ‘ 𝑦 ) ) = 0 → 0 ∈ ℕ ) ) |
| 56 | 44 55 | sylbid | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( ( 0 · ( ( 𝑂 ‘ 𝑥 ) gcd ( 𝑂 ‘ 𝑦 ) ) ) ∥ ( ( 𝑂 ‘ 𝑥 ) · ( 𝑂 ‘ 𝑦 ) ) → 0 ∈ ℕ ) ) |
| 57 | 30 56 | mtoi | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → ¬ ( 0 · ( ( 𝑂 ‘ 𝑥 ) gcd ( 𝑂 ‘ 𝑦 ) ) ) ∥ ( ( 𝑂 ‘ 𝑥 ) · ( 𝑂 ‘ 𝑦 ) ) ) |
| 58 | simpll | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → 𝐺 ∈ Abel ) | |
| 59 | 1 3 27 | odadd1 | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑂 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) · ( ( 𝑂 ‘ 𝑥 ) gcd ( 𝑂 ‘ 𝑦 ) ) ) ∥ ( ( 𝑂 ‘ 𝑥 ) · ( 𝑂 ‘ 𝑦 ) ) ) |
| 60 | 58 24 26 59 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( ( 𝑂 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) · ( ( 𝑂 ‘ 𝑥 ) gcd ( 𝑂 ‘ 𝑦 ) ) ) ∥ ( ( 𝑂 ‘ 𝑥 ) · ( 𝑂 ‘ 𝑦 ) ) ) |
| 61 | oveq1 | ⊢ ( ( 𝑂 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = 0 → ( ( 𝑂 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) · ( ( 𝑂 ‘ 𝑥 ) gcd ( 𝑂 ‘ 𝑦 ) ) ) = ( 0 · ( ( 𝑂 ‘ 𝑥 ) gcd ( 𝑂 ‘ 𝑦 ) ) ) ) | |
| 62 | 61 | breq1d | ⊢ ( ( 𝑂 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = 0 → ( ( ( 𝑂 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) · ( ( 𝑂 ‘ 𝑥 ) gcd ( 𝑂 ‘ 𝑦 ) ) ) ∥ ( ( 𝑂 ‘ 𝑥 ) · ( 𝑂 ‘ 𝑦 ) ) ↔ ( 0 · ( ( 𝑂 ‘ 𝑥 ) gcd ( 𝑂 ‘ 𝑦 ) ) ) ∥ ( ( 𝑂 ‘ 𝑥 ) · ( 𝑂 ‘ 𝑦 ) ) ) ) |
| 63 | 60 62 | syl5ibcom | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( ( 𝑂 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = 0 → ( 0 · ( ( 𝑂 ‘ 𝑥 ) gcd ( 𝑂 ‘ 𝑦 ) ) ) ∥ ( ( 𝑂 ‘ 𝑥 ) · ( 𝑂 ‘ 𝑦 ) ) ) ) |
| 64 | 57 63 | mtod | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → ¬ ( 𝑂 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = 0 ) |
| 65 | 3 1 | odcl | ⊢ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) → ( 𝑂 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ℕ0 ) |
| 66 | 29 65 | syl | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( 𝑂 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ℕ0 ) |
| 67 | elnn0 | ⊢ ( ( 𝑂 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ℕ0 ↔ ( ( 𝑂 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ℕ ∨ ( 𝑂 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = 0 ) ) | |
| 68 | 66 67 | sylib | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( ( 𝑂 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ℕ ∨ ( 𝑂 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = 0 ) ) |
| 69 | 68 | ord | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( ¬ ( 𝑂 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ℕ → ( 𝑂 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = 0 ) ) |
| 70 | 64 69 | mt3d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( 𝑂 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ℕ ) |
| 71 | elpreima | ⊢ ( 𝑂 Fn ( Base ‘ 𝐺 ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( ◡ 𝑂 “ ℕ ) ↔ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑂 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ℕ ) ) ) | |
| 72 | 17 71 | ax-mp | ⊢ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( ◡ 𝑂 “ ℕ ) ↔ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑂 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ℕ ) ) |
| 73 | 29 70 72 | sylanbrc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) ∧ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( ◡ 𝑂 “ ℕ ) ) |
| 74 | 73 | ralrimiva | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) → ∀ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( ◡ 𝑂 “ ℕ ) ) |
| 75 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 76 | 3 75 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐺 ) ) |
| 77 | 8 23 76 | syl2an | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐺 ) ) |
| 78 | 1 75 3 | odinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑂 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) = ( 𝑂 ‘ 𝑥 ) ) |
| 79 | 8 23 78 | syl2an | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( 𝑂 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) = ( 𝑂 ‘ 𝑥 ) ) |
| 80 | 47 | adantl | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( 𝑂 ‘ 𝑥 ) ∈ ℕ ) |
| 81 | 79 80 | eqeltrd | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( 𝑂 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℕ ) |
| 82 | elpreima | ⊢ ( 𝑂 Fn ( Base ‘ 𝐺 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( ◡ 𝑂 “ ℕ ) ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑂 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℕ ) ) ) | |
| 83 | 17 82 | ax-mp | ⊢ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( ◡ 𝑂 “ ℕ ) ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑂 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℕ ) ) |
| 84 | 77 81 83 | sylanbrc | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( ◡ 𝑂 “ ℕ ) ) |
| 85 | 74 84 | jca | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ) → ( ∀ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( ◡ 𝑂 “ ℕ ) ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( ◡ 𝑂 “ ℕ ) ) ) |
| 86 | 85 | ralrimiva | ⊢ ( 𝐺 ∈ Abel → ∀ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ( ∀ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( ◡ 𝑂 “ ℕ ) ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( ◡ 𝑂 “ ℕ ) ) ) |
| 87 | 3 27 75 | issubg2 | ⊢ ( 𝐺 ∈ Grp → ( ( ◡ 𝑂 “ ℕ ) ∈ ( SubGrp ‘ 𝐺 ) ↔ ( ( ◡ 𝑂 “ ℕ ) ⊆ ( Base ‘ 𝐺 ) ∧ ( ◡ 𝑂 “ ℕ ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ( ∀ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( ◡ 𝑂 “ ℕ ) ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( ◡ 𝑂 “ ℕ ) ) ) ) ) |
| 88 | 8 87 | syl | ⊢ ( 𝐺 ∈ Abel → ( ( ◡ 𝑂 “ ℕ ) ∈ ( SubGrp ‘ 𝐺 ) ↔ ( ( ◡ 𝑂 “ ℕ ) ⊆ ( Base ‘ 𝐺 ) ∧ ( ◡ 𝑂 “ ℕ ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( ◡ 𝑂 “ ℕ ) ( ∀ 𝑦 ∈ ( ◡ 𝑂 “ ℕ ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( ◡ 𝑂 “ ℕ ) ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( ◡ 𝑂 “ ℕ ) ) ) ) ) |
| 89 | 7 21 86 88 | mpbir3and | ⊢ ( 𝐺 ∈ Abel → ( ◡ 𝑂 “ ℕ ) ∈ ( SubGrp ‘ 𝐺 ) ) |