This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of the group element order. (Contributed by Stefan O'Rear, 5-Sep-2015) (Proof shortened by AV, 5-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| Assertion | odf | ⊢ 𝑂 : 𝑋 ⟶ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | c0ex | ⊢ 0 ∈ V | |
| 4 | ltso | ⊢ < Or ℝ | |
| 5 | 4 | infex | ⊢ inf ( 𝑤 , ℝ , < ) ∈ V |
| 6 | 3 5 | ifex | ⊢ if ( 𝑤 = ∅ , 0 , inf ( 𝑤 , ℝ , < ) ) ∈ V |
| 7 | 6 | csbex | ⊢ ⦋ { 𝑧 ∈ ℕ ∣ ( 𝑧 ( .g ‘ 𝐺 ) 𝑦 ) = ( 0g ‘ 𝐺 ) } / 𝑤 ⦌ if ( 𝑤 = ∅ , 0 , inf ( 𝑤 , ℝ , < ) ) ∈ V |
| 8 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 9 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 10 | 1 8 9 2 | odfval | ⊢ 𝑂 = ( 𝑦 ∈ 𝑋 ↦ ⦋ { 𝑧 ∈ ℕ ∣ ( 𝑧 ( .g ‘ 𝐺 ) 𝑦 ) = ( 0g ‘ 𝐺 ) } / 𝑤 ⦌ if ( 𝑤 = ∅ , 0 , inf ( 𝑤 , ℝ , < ) ) ) |
| 11 | 7 10 | fnmpti | ⊢ 𝑂 Fn 𝑋 |
| 12 | 1 2 | odcl | ⊢ ( 𝑥 ∈ 𝑋 → ( 𝑂 ‘ 𝑥 ) ∈ ℕ0 ) |
| 13 | 12 | rgen | ⊢ ∀ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) ∈ ℕ0 |
| 14 | ffnfv | ⊢ ( 𝑂 : 𝑋 ⟶ ℕ0 ↔ ( 𝑂 Fn 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) ∈ ℕ0 ) ) | |
| 15 | 11 13 14 | mpbir2an | ⊢ 𝑂 : 𝑋 ⟶ ℕ0 |