This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The geometric series converges even if it is multiplied by k to result in the larger series k x. A ^ k . (Contributed by Mario Carneiro, 27-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | geomulcvg.1 | |- F = ( k e. NN0 |-> ( k x. ( A ^ k ) ) ) |
|
| Assertion | geomulcvg | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , F ) e. dom ~~> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | geomulcvg.1 | |- F = ( k e. NN0 |-> ( k x. ( A ^ k ) ) ) |
|
| 2 | elnn0 | |- ( k e. NN0 <-> ( k e. NN \/ k = 0 ) ) |
|
| 3 | simpr | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> A = 0 ) |
|
| 4 | 3 | oveq1d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> ( A ^ k ) = ( 0 ^ k ) ) |
| 5 | 0exp | |- ( k e. NN -> ( 0 ^ k ) = 0 ) |
|
| 6 | 4 5 | sylan9eq | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k e. NN ) -> ( A ^ k ) = 0 ) |
| 7 | 6 | oveq2d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k e. NN ) -> ( k x. ( A ^ k ) ) = ( k x. 0 ) ) |
| 8 | nncn | |- ( k e. NN -> k e. CC ) |
|
| 9 | 8 | adantl | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k e. NN ) -> k e. CC ) |
| 10 | 9 | mul01d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k e. NN ) -> ( k x. 0 ) = 0 ) |
| 11 | 7 10 | eqtrd | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k e. NN ) -> ( k x. ( A ^ k ) ) = 0 ) |
| 12 | simpr | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k = 0 ) -> k = 0 ) |
|
| 13 | 12 | oveq1d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k = 0 ) -> ( k x. ( A ^ k ) ) = ( 0 x. ( A ^ k ) ) ) |
| 14 | simplll | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k = 0 ) -> A e. CC ) |
|
| 15 | 0nn0 | |- 0 e. NN0 |
|
| 16 | 12 15 | eqeltrdi | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k = 0 ) -> k e. NN0 ) |
| 17 | 14 16 | expcld | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k = 0 ) -> ( A ^ k ) e. CC ) |
| 18 | 17 | mul02d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k = 0 ) -> ( 0 x. ( A ^ k ) ) = 0 ) |
| 19 | 13 18 | eqtrd | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k = 0 ) -> ( k x. ( A ^ k ) ) = 0 ) |
| 20 | 11 19 | jaodan | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ ( k e. NN \/ k = 0 ) ) -> ( k x. ( A ^ k ) ) = 0 ) |
| 21 | 2 20 | sylan2b | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k e. NN0 ) -> ( k x. ( A ^ k ) ) = 0 ) |
| 22 | 21 | mpteq2dva | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> ( k e. NN0 |-> ( k x. ( A ^ k ) ) ) = ( k e. NN0 |-> 0 ) ) |
| 23 | 1 22 | eqtrid | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> F = ( k e. NN0 |-> 0 ) ) |
| 24 | fconstmpt | |- ( NN0 X. { 0 } ) = ( k e. NN0 |-> 0 ) |
|
| 25 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 26 | 25 | xpeq1i | |- ( NN0 X. { 0 } ) = ( ( ZZ>= ` 0 ) X. { 0 } ) |
| 27 | 24 26 | eqtr3i | |- ( k e. NN0 |-> 0 ) = ( ( ZZ>= ` 0 ) X. { 0 } ) |
| 28 | 23 27 | eqtrdi | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> F = ( ( ZZ>= ` 0 ) X. { 0 } ) ) |
| 29 | 28 | seqeq3d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> seq 0 ( + , F ) = seq 0 ( + , ( ( ZZ>= ` 0 ) X. { 0 } ) ) ) |
| 30 | 0z | |- 0 e. ZZ |
|
| 31 | serclim0 | |- ( 0 e. ZZ -> seq 0 ( + , ( ( ZZ>= ` 0 ) X. { 0 } ) ) ~~> 0 ) |
|
| 32 | 30 31 | ax-mp | |- seq 0 ( + , ( ( ZZ>= ` 0 ) X. { 0 } ) ) ~~> 0 |
| 33 | 29 32 | eqbrtrdi | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> seq 0 ( + , F ) ~~> 0 ) |
| 34 | seqex | |- seq 0 ( + , F ) e. _V |
|
| 35 | c0ex | |- 0 e. _V |
|
| 36 | 34 35 | breldm | |- ( seq 0 ( + , F ) ~~> 0 -> seq 0 ( + , F ) e. dom ~~> ) |
| 37 | 33 36 | syl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> seq 0 ( + , F ) e. dom ~~> ) |
| 38 | 1red | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> 1 e. RR ) |
|
| 39 | abscl | |- ( A e. CC -> ( abs ` A ) e. RR ) |
|
| 40 | 39 | adantr | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) e. RR ) |
| 41 | peano2re | |- ( ( abs ` A ) e. RR -> ( ( abs ` A ) + 1 ) e. RR ) |
|
| 42 | 40 41 | syl | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( abs ` A ) + 1 ) e. RR ) |
| 43 | 42 | rehalfcld | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( ( abs ` A ) + 1 ) / 2 ) e. RR ) |
| 44 | 43 | adantr | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> ( ( ( abs ` A ) + 1 ) / 2 ) e. RR ) |
| 45 | absrpcl | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR+ ) |
|
| 46 | 45 | adantlr | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> ( abs ` A ) e. RR+ ) |
| 47 | 44 46 | rerpdivcld | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) e. RR ) |
| 48 | 40 | recnd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) e. CC ) |
| 49 | 48 | mullidd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( 1 x. ( abs ` A ) ) = ( abs ` A ) ) |
| 50 | simpr | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) < 1 ) |
|
| 51 | 1re | |- 1 e. RR |
|
| 52 | avglt1 | |- ( ( ( abs ` A ) e. RR /\ 1 e. RR ) -> ( ( abs ` A ) < 1 <-> ( abs ` A ) < ( ( ( abs ` A ) + 1 ) / 2 ) ) ) |
|
| 53 | 40 51 52 | sylancl | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( abs ` A ) < 1 <-> ( abs ` A ) < ( ( ( abs ` A ) + 1 ) / 2 ) ) ) |
| 54 | 50 53 | mpbid | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) < ( ( ( abs ` A ) + 1 ) / 2 ) ) |
| 55 | 49 54 | eqbrtrd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( 1 x. ( abs ` A ) ) < ( ( ( abs ` A ) + 1 ) / 2 ) ) |
| 56 | 55 | adantr | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> ( 1 x. ( abs ` A ) ) < ( ( ( abs ` A ) + 1 ) / 2 ) ) |
| 57 | 38 44 46 | ltmuldivd | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> ( ( 1 x. ( abs ` A ) ) < ( ( ( abs ` A ) + 1 ) / 2 ) <-> 1 < ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ) ) |
| 58 | 56 57 | mpbid | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> 1 < ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ) |
| 59 | expmulnbnd | |- ( ( 1 e. RR /\ ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) e. RR /\ 1 < ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ) -> E. n e. NN0 A. k e. ( ZZ>= ` n ) ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) ) |
|
| 60 | 38 47 58 59 | syl3anc | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> E. n e. NN0 A. k e. ( ZZ>= ` n ) ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) ) |
| 61 | eluznn0 | |- ( ( n e. NN0 /\ k e. ( ZZ>= ` n ) ) -> k e. NN0 ) |
|
| 62 | nn0cn | |- ( k e. NN0 -> k e. CC ) |
|
| 63 | 62 | adantl | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> k e. CC ) |
| 64 | 63 | mullidd | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( 1 x. k ) = k ) |
| 65 | 43 | recnd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( ( abs ` A ) + 1 ) / 2 ) e. CC ) |
| 66 | 65 | ad2antrr | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( ( ( abs ` A ) + 1 ) / 2 ) e. CC ) |
| 67 | 48 | ad2antrr | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( abs ` A ) e. CC ) |
| 68 | 46 | adantr | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( abs ` A ) e. RR+ ) |
| 69 | 68 | rpne0d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( abs ` A ) =/= 0 ) |
| 70 | simpr | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> k e. NN0 ) |
|
| 71 | 66 67 69 70 | expdivd | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) = ( ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) / ( ( abs ` A ) ^ k ) ) ) |
| 72 | 64 71 | breq12d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) <-> k < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) / ( ( abs ` A ) ^ k ) ) ) ) |
| 73 | nn0re | |- ( k e. NN0 -> k e. RR ) |
|
| 74 | 73 | adantl | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> k e. RR ) |
| 75 | reexpcl | |- ( ( ( ( ( abs ` A ) + 1 ) / 2 ) e. RR /\ k e. NN0 ) -> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) e. RR ) |
|
| 76 | 44 75 | sylan | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) e. RR ) |
| 77 | 40 | adantr | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> ( abs ` A ) e. RR ) |
| 78 | reexpcl | |- ( ( ( abs ` A ) e. RR /\ k e. NN0 ) -> ( ( abs ` A ) ^ k ) e. RR ) |
|
| 79 | 77 78 | sylan | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( ( abs ` A ) ^ k ) e. RR ) |
| 80 | 77 | adantr | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( abs ` A ) e. RR ) |
| 81 | nn0z | |- ( k e. NN0 -> k e. ZZ ) |
|
| 82 | 81 | adantl | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> k e. ZZ ) |
| 83 | 68 | rpgt0d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> 0 < ( abs ` A ) ) |
| 84 | expgt0 | |- ( ( ( abs ` A ) e. RR /\ k e. ZZ /\ 0 < ( abs ` A ) ) -> 0 < ( ( abs ` A ) ^ k ) ) |
|
| 85 | 80 82 83 84 | syl3anc | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> 0 < ( ( abs ` A ) ^ k ) ) |
| 86 | ltmuldiv | |- ( ( k e. RR /\ ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) e. RR /\ ( ( ( abs ` A ) ^ k ) e. RR /\ 0 < ( ( abs ` A ) ^ k ) ) ) -> ( ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) <-> k < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) / ( ( abs ` A ) ^ k ) ) ) ) |
|
| 87 | 74 76 79 85 86 | syl112anc | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) <-> k < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) / ( ( abs ` A ) ^ k ) ) ) ) |
| 88 | 72 87 | bitr4d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) <-> ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) |
| 89 | 61 88 | sylan2 | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ ( n e. NN0 /\ k e. ( ZZ>= ` n ) ) ) -> ( ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) <-> ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) |
| 90 | 89 | anassrs | |- ( ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ n e. NN0 ) /\ k e. ( ZZ>= ` n ) ) -> ( ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) <-> ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) |
| 91 | 90 | ralbidva | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ n e. NN0 ) -> ( A. k e. ( ZZ>= ` n ) ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) <-> A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) |
| 92 | simprl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) -> n e. NN0 ) |
|
| 93 | oveq2 | |- ( k = m -> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) |
|
| 94 | eqid | |- ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) = ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) |
|
| 95 | ovex | |- ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) e. _V |
|
| 96 | 93 94 95 | fvmpt | |- ( m e. NN0 -> ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` m ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) |
| 97 | 96 | adantl | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` m ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) |
| 98 | 43 | ad2antrr | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( ( ( abs ` A ) + 1 ) / 2 ) e. RR ) |
| 99 | simpr | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> m e. NN0 ) |
|
| 100 | 98 99 | reexpcld | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) e. RR ) |
| 101 | 97 100 | eqeltrd | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` m ) e. RR ) |
| 102 | id | |- ( k = m -> k = m ) |
|
| 103 | oveq2 | |- ( k = m -> ( A ^ k ) = ( A ^ m ) ) |
|
| 104 | 102 103 | oveq12d | |- ( k = m -> ( k x. ( A ^ k ) ) = ( m x. ( A ^ m ) ) ) |
| 105 | ovex | |- ( m x. ( A ^ m ) ) e. _V |
|
| 106 | 104 1 105 | fvmpt | |- ( m e. NN0 -> ( F ` m ) = ( m x. ( A ^ m ) ) ) |
| 107 | 106 | adantl | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( F ` m ) = ( m x. ( A ^ m ) ) ) |
| 108 | nn0cn | |- ( m e. NN0 -> m e. CC ) |
|
| 109 | 108 | adantl | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> m e. CC ) |
| 110 | expcl | |- ( ( A e. CC /\ m e. NN0 ) -> ( A ^ m ) e. CC ) |
|
| 111 | 110 | ad4ant14 | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( A ^ m ) e. CC ) |
| 112 | 109 111 | mulcld | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( m x. ( A ^ m ) ) e. CC ) |
| 113 | 107 112 | eqeltrd | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( F ` m ) e. CC ) |
| 114 | 0red | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 e. RR ) |
|
| 115 | absge0 | |- ( A e. CC -> 0 <_ ( abs ` A ) ) |
|
| 116 | 115 | adantr | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 <_ ( abs ` A ) ) |
| 117 | 114 40 43 116 54 | lelttrd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 < ( ( ( abs ` A ) + 1 ) / 2 ) ) |
| 118 | 114 43 117 | ltled | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 <_ ( ( ( abs ` A ) + 1 ) / 2 ) ) |
| 119 | 43 118 | absidd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( ( ( abs ` A ) + 1 ) / 2 ) ) = ( ( ( abs ` A ) + 1 ) / 2 ) ) |
| 120 | avglt2 | |- ( ( ( abs ` A ) e. RR /\ 1 e. RR ) -> ( ( abs ` A ) < 1 <-> ( ( ( abs ` A ) + 1 ) / 2 ) < 1 ) ) |
|
| 121 | 40 51 120 | sylancl | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( abs ` A ) < 1 <-> ( ( ( abs ` A ) + 1 ) / 2 ) < 1 ) ) |
| 122 | 50 121 | mpbid | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( ( abs ` A ) + 1 ) / 2 ) < 1 ) |
| 123 | 119 122 | eqbrtrd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( ( ( abs ` A ) + 1 ) / 2 ) ) < 1 ) |
| 124 | oveq2 | |- ( k = n -> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ n ) ) |
|
| 125 | ovex | |- ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ n ) e. _V |
|
| 126 | 124 94 125 | fvmpt | |- ( n e. NN0 -> ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` n ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ n ) ) |
| 127 | 126 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` n ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ n ) ) |
| 128 | 65 123 127 | geolim | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) ~~> ( 1 / ( 1 - ( ( ( abs ` A ) + 1 ) / 2 ) ) ) ) |
| 129 | seqex | |- seq 0 ( + , ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) e. _V |
|
| 130 | ovex | |- ( 1 / ( 1 - ( ( ( abs ` A ) + 1 ) / 2 ) ) ) e. _V |
|
| 131 | 129 130 | breldm | |- ( seq 0 ( + , ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) ~~> ( 1 / ( 1 - ( ( ( abs ` A ) + 1 ) / 2 ) ) ) -> seq 0 ( + , ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) e. dom ~~> ) |
| 132 | 128 131 | syl | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) e. dom ~~> ) |
| 133 | 132 | adantr | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) -> seq 0 ( + , ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) e. dom ~~> ) |
| 134 | 1red | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) -> 1 e. RR ) |
|
| 135 | eluznn0 | |- ( ( n e. NN0 /\ m e. ( ZZ>= ` n ) ) -> m e. NN0 ) |
|
| 136 | 92 135 | sylan | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> m e. NN0 ) |
| 137 | 136 | nn0red | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> m e. RR ) |
| 138 | simplll | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> A e. CC ) |
|
| 139 | 138 | abscld | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` A ) e. RR ) |
| 140 | 139 136 | reexpcld | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( ( abs ` A ) ^ m ) e. RR ) |
| 141 | 137 140 | remulcld | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( m x. ( ( abs ` A ) ^ m ) ) e. RR ) |
| 142 | 136 100 | syldan | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) e. RR ) |
| 143 | simprr | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) -> A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) |
|
| 144 | oveq2 | |- ( k = m -> ( ( abs ` A ) ^ k ) = ( ( abs ` A ) ^ m ) ) |
|
| 145 | 102 144 | oveq12d | |- ( k = m -> ( k x. ( ( abs ` A ) ^ k ) ) = ( m x. ( ( abs ` A ) ^ m ) ) ) |
| 146 | 145 93 | breq12d | |- ( k = m -> ( ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) <-> ( m x. ( ( abs ` A ) ^ m ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) ) |
| 147 | 146 | rspccva | |- ( ( A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) /\ m e. ( ZZ>= ` n ) ) -> ( m x. ( ( abs ` A ) ^ m ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) |
| 148 | 143 147 | sylan | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( m x. ( ( abs ` A ) ^ m ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) |
| 149 | 141 142 148 | ltled | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( m x. ( ( abs ` A ) ^ m ) ) <_ ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) |
| 150 | 136 | nn0cnd | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> m e. CC ) |
| 151 | 138 136 | expcld | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( A ^ m ) e. CC ) |
| 152 | 150 151 | absmuld | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` ( m x. ( A ^ m ) ) ) = ( ( abs ` m ) x. ( abs ` ( A ^ m ) ) ) ) |
| 153 | 136 | nn0ge0d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> 0 <_ m ) |
| 154 | 137 153 | absidd | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` m ) = m ) |
| 155 | 138 136 | absexpd | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` ( A ^ m ) ) = ( ( abs ` A ) ^ m ) ) |
| 156 | 154 155 | oveq12d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( ( abs ` m ) x. ( abs ` ( A ^ m ) ) ) = ( m x. ( ( abs ` A ) ^ m ) ) ) |
| 157 | 152 156 | eqtrd | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` ( m x. ( A ^ m ) ) ) = ( m x. ( ( abs ` A ) ^ m ) ) ) |
| 158 | 142 | recnd | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) e. CC ) |
| 159 | 158 | mullidd | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( 1 x. ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) |
| 160 | 149 157 159 | 3brtr4d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` ( m x. ( A ^ m ) ) ) <_ ( 1 x. ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) ) |
| 161 | 136 106 | syl | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( F ` m ) = ( m x. ( A ^ m ) ) ) |
| 162 | 161 | fveq2d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` ( F ` m ) ) = ( abs ` ( m x. ( A ^ m ) ) ) ) |
| 163 | 136 96 | syl | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` m ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) |
| 164 | 163 | oveq2d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( 1 x. ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` m ) ) = ( 1 x. ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) ) |
| 165 | 160 162 164 | 3brtr4d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` ( F ` m ) ) <_ ( 1 x. ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` m ) ) ) |
| 166 | 25 92 101 113 133 134 165 | cvgcmpce | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) -> seq 0 ( + , F ) e. dom ~~> ) |
| 167 | 166 | expr | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) -> seq 0 ( + , F ) e. dom ~~> ) ) |
| 168 | 167 | adantlr | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ n e. NN0 ) -> ( A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) -> seq 0 ( + , F ) e. dom ~~> ) ) |
| 169 | 91 168 | sylbid | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ n e. NN0 ) -> ( A. k e. ( ZZ>= ` n ) ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) -> seq 0 ( + , F ) e. dom ~~> ) ) |
| 170 | 169 | rexlimdva | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> ( E. n e. NN0 A. k e. ( ZZ>= ` n ) ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) -> seq 0 ( + , F ) e. dom ~~> ) ) |
| 171 | 60 170 | mpd | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> seq 0 ( + , F ) e. dom ~~> ) |
| 172 | 37 171 | pm2.61dane | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , F ) e. dom ~~> ) |