This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinality of a finite set of sequential integers. (See om2uz0i for a description of the hypothesis.) (Contributed by Mario Carneiro, 12-Feb-2013) (Revised by Mario Carneiro, 7-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fzennn.1 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) | |
| Assertion | fzennn | ⊢ ( 𝑁 ∈ ℕ0 → ( 1 ... 𝑁 ) ≈ ( ◡ 𝐺 ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzennn.1 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) | |
| 2 | oveq2 | ⊢ ( 𝑛 = 0 → ( 1 ... 𝑛 ) = ( 1 ... 0 ) ) | |
| 3 | fveq2 | ⊢ ( 𝑛 = 0 → ( ◡ 𝐺 ‘ 𝑛 ) = ( ◡ 𝐺 ‘ 0 ) ) | |
| 4 | 2 3 | breq12d | ⊢ ( 𝑛 = 0 → ( ( 1 ... 𝑛 ) ≈ ( ◡ 𝐺 ‘ 𝑛 ) ↔ ( 1 ... 0 ) ≈ ( ◡ 𝐺 ‘ 0 ) ) ) |
| 5 | oveq2 | ⊢ ( 𝑛 = 𝑚 → ( 1 ... 𝑛 ) = ( 1 ... 𝑚 ) ) | |
| 6 | fveq2 | ⊢ ( 𝑛 = 𝑚 → ( ◡ 𝐺 ‘ 𝑛 ) = ( ◡ 𝐺 ‘ 𝑚 ) ) | |
| 7 | 5 6 | breq12d | ⊢ ( 𝑛 = 𝑚 → ( ( 1 ... 𝑛 ) ≈ ( ◡ 𝐺 ‘ 𝑛 ) ↔ ( 1 ... 𝑚 ) ≈ ( ◡ 𝐺 ‘ 𝑚 ) ) ) |
| 8 | oveq2 | ⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 1 ... 𝑛 ) = ( 1 ... ( 𝑚 + 1 ) ) ) | |
| 9 | fveq2 | ⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ◡ 𝐺 ‘ 𝑛 ) = ( ◡ 𝐺 ‘ ( 𝑚 + 1 ) ) ) | |
| 10 | 8 9 | breq12d | ⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 1 ... 𝑛 ) ≈ ( ◡ 𝐺 ‘ 𝑛 ) ↔ ( 1 ... ( 𝑚 + 1 ) ) ≈ ( ◡ 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) |
| 11 | oveq2 | ⊢ ( 𝑛 = 𝑁 → ( 1 ... 𝑛 ) = ( 1 ... 𝑁 ) ) | |
| 12 | fveq2 | ⊢ ( 𝑛 = 𝑁 → ( ◡ 𝐺 ‘ 𝑛 ) = ( ◡ 𝐺 ‘ 𝑁 ) ) | |
| 13 | 11 12 | breq12d | ⊢ ( 𝑛 = 𝑁 → ( ( 1 ... 𝑛 ) ≈ ( ◡ 𝐺 ‘ 𝑛 ) ↔ ( 1 ... 𝑁 ) ≈ ( ◡ 𝐺 ‘ 𝑁 ) ) ) |
| 14 | 0ex | ⊢ ∅ ∈ V | |
| 15 | 14 | enref | ⊢ ∅ ≈ ∅ |
| 16 | fz10 | ⊢ ( 1 ... 0 ) = ∅ | |
| 17 | 0z | ⊢ 0 ∈ ℤ | |
| 18 | 17 1 | om2uzf1oi | ⊢ 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 0 ) |
| 19 | peano1 | ⊢ ∅ ∈ ω | |
| 20 | 18 19 | pm3.2i | ⊢ ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 0 ) ∧ ∅ ∈ ω ) |
| 21 | 17 1 | om2uz0i | ⊢ ( 𝐺 ‘ ∅ ) = 0 |
| 22 | f1ocnvfv | ⊢ ( ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 0 ) ∧ ∅ ∈ ω ) → ( ( 𝐺 ‘ ∅ ) = 0 → ( ◡ 𝐺 ‘ 0 ) = ∅ ) ) | |
| 23 | 20 21 22 | mp2 | ⊢ ( ◡ 𝐺 ‘ 0 ) = ∅ |
| 24 | 15 16 23 | 3brtr4i | ⊢ ( 1 ... 0 ) ≈ ( ◡ 𝐺 ‘ 0 ) |
| 25 | simpr | ⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 1 ... 𝑚 ) ≈ ( ◡ 𝐺 ‘ 𝑚 ) ) → ( 1 ... 𝑚 ) ≈ ( ◡ 𝐺 ‘ 𝑚 ) ) | |
| 26 | ovex | ⊢ ( 𝑚 + 1 ) ∈ V | |
| 27 | fvex | ⊢ ( ◡ 𝐺 ‘ 𝑚 ) ∈ V | |
| 28 | en2sn | ⊢ ( ( ( 𝑚 + 1 ) ∈ V ∧ ( ◡ 𝐺 ‘ 𝑚 ) ∈ V ) → { ( 𝑚 + 1 ) } ≈ { ( ◡ 𝐺 ‘ 𝑚 ) } ) | |
| 29 | 26 27 28 | mp2an | ⊢ { ( 𝑚 + 1 ) } ≈ { ( ◡ 𝐺 ‘ 𝑚 ) } |
| 30 | 29 | a1i | ⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 1 ... 𝑚 ) ≈ ( ◡ 𝐺 ‘ 𝑚 ) ) → { ( 𝑚 + 1 ) } ≈ { ( ◡ 𝐺 ‘ 𝑚 ) } ) |
| 31 | fzp1disj | ⊢ ( ( 1 ... 𝑚 ) ∩ { ( 𝑚 + 1 ) } ) = ∅ | |
| 32 | 31 | a1i | ⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 1 ... 𝑚 ) ≈ ( ◡ 𝐺 ‘ 𝑚 ) ) → ( ( 1 ... 𝑚 ) ∩ { ( 𝑚 + 1 ) } ) = ∅ ) |
| 33 | f1ocnvdm | ⊢ ( ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 0 ) ) → ( ◡ 𝐺 ‘ 𝑚 ) ∈ ω ) | |
| 34 | 18 33 | mpan | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 0 ) → ( ◡ 𝐺 ‘ 𝑚 ) ∈ ω ) |
| 35 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 36 | 34 35 | eleq2s | ⊢ ( 𝑚 ∈ ℕ0 → ( ◡ 𝐺 ‘ 𝑚 ) ∈ ω ) |
| 37 | nnord | ⊢ ( ( ◡ 𝐺 ‘ 𝑚 ) ∈ ω → Ord ( ◡ 𝐺 ‘ 𝑚 ) ) | |
| 38 | ordirr | ⊢ ( Ord ( ◡ 𝐺 ‘ 𝑚 ) → ¬ ( ◡ 𝐺 ‘ 𝑚 ) ∈ ( ◡ 𝐺 ‘ 𝑚 ) ) | |
| 39 | 36 37 38 | 3syl | ⊢ ( 𝑚 ∈ ℕ0 → ¬ ( ◡ 𝐺 ‘ 𝑚 ) ∈ ( ◡ 𝐺 ‘ 𝑚 ) ) |
| 40 | 39 | adantr | ⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 1 ... 𝑚 ) ≈ ( ◡ 𝐺 ‘ 𝑚 ) ) → ¬ ( ◡ 𝐺 ‘ 𝑚 ) ∈ ( ◡ 𝐺 ‘ 𝑚 ) ) |
| 41 | disjsn | ⊢ ( ( ( ◡ 𝐺 ‘ 𝑚 ) ∩ { ( ◡ 𝐺 ‘ 𝑚 ) } ) = ∅ ↔ ¬ ( ◡ 𝐺 ‘ 𝑚 ) ∈ ( ◡ 𝐺 ‘ 𝑚 ) ) | |
| 42 | 40 41 | sylibr | ⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 1 ... 𝑚 ) ≈ ( ◡ 𝐺 ‘ 𝑚 ) ) → ( ( ◡ 𝐺 ‘ 𝑚 ) ∩ { ( ◡ 𝐺 ‘ 𝑚 ) } ) = ∅ ) |
| 43 | unen | ⊢ ( ( ( ( 1 ... 𝑚 ) ≈ ( ◡ 𝐺 ‘ 𝑚 ) ∧ { ( 𝑚 + 1 ) } ≈ { ( ◡ 𝐺 ‘ 𝑚 ) } ) ∧ ( ( ( 1 ... 𝑚 ) ∩ { ( 𝑚 + 1 ) } ) = ∅ ∧ ( ( ◡ 𝐺 ‘ 𝑚 ) ∩ { ( ◡ 𝐺 ‘ 𝑚 ) } ) = ∅ ) ) → ( ( 1 ... 𝑚 ) ∪ { ( 𝑚 + 1 ) } ) ≈ ( ( ◡ 𝐺 ‘ 𝑚 ) ∪ { ( ◡ 𝐺 ‘ 𝑚 ) } ) ) | |
| 44 | 25 30 32 42 43 | syl22anc | ⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 1 ... 𝑚 ) ≈ ( ◡ 𝐺 ‘ 𝑚 ) ) → ( ( 1 ... 𝑚 ) ∪ { ( 𝑚 + 1 ) } ) ≈ ( ( ◡ 𝐺 ‘ 𝑚 ) ∪ { ( ◡ 𝐺 ‘ 𝑚 ) } ) ) |
| 45 | 1z | ⊢ 1 ∈ ℤ | |
| 46 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 47 | 46 | fveq2i | ⊢ ( ℤ≥ ‘ ( 1 − 1 ) ) = ( ℤ≥ ‘ 0 ) |
| 48 | 35 47 | eqtr4i | ⊢ ℕ0 = ( ℤ≥ ‘ ( 1 − 1 ) ) |
| 49 | 48 | eleq2i | ⊢ ( 𝑚 ∈ ℕ0 ↔ 𝑚 ∈ ( ℤ≥ ‘ ( 1 − 1 ) ) ) |
| 50 | 49 | biimpi | ⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ( ℤ≥ ‘ ( 1 − 1 ) ) ) |
| 51 | fzsuc2 | ⊢ ( ( 1 ∈ ℤ ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 1 − 1 ) ) ) → ( 1 ... ( 𝑚 + 1 ) ) = ( ( 1 ... 𝑚 ) ∪ { ( 𝑚 + 1 ) } ) ) | |
| 52 | 45 50 51 | sylancr | ⊢ ( 𝑚 ∈ ℕ0 → ( 1 ... ( 𝑚 + 1 ) ) = ( ( 1 ... 𝑚 ) ∪ { ( 𝑚 + 1 ) } ) ) |
| 53 | 52 | adantr | ⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 1 ... 𝑚 ) ≈ ( ◡ 𝐺 ‘ 𝑚 ) ) → ( 1 ... ( 𝑚 + 1 ) ) = ( ( 1 ... 𝑚 ) ∪ { ( 𝑚 + 1 ) } ) ) |
| 54 | peano2 | ⊢ ( ( ◡ 𝐺 ‘ 𝑚 ) ∈ ω → suc ( ◡ 𝐺 ‘ 𝑚 ) ∈ ω ) | |
| 55 | 36 54 | syl | ⊢ ( 𝑚 ∈ ℕ0 → suc ( ◡ 𝐺 ‘ 𝑚 ) ∈ ω ) |
| 56 | 55 18 | jctil | ⊢ ( 𝑚 ∈ ℕ0 → ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 0 ) ∧ suc ( ◡ 𝐺 ‘ 𝑚 ) ∈ ω ) ) |
| 57 | 17 1 | om2uzsuci | ⊢ ( ( ◡ 𝐺 ‘ 𝑚 ) ∈ ω → ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝑚 ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑚 ) ) + 1 ) ) |
| 58 | 36 57 | syl | ⊢ ( 𝑚 ∈ ℕ0 → ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝑚 ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑚 ) ) + 1 ) ) |
| 59 | 35 | eleq2i | ⊢ ( 𝑚 ∈ ℕ0 ↔ 𝑚 ∈ ( ℤ≥ ‘ 0 ) ) |
| 60 | 59 | biimpi | ⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ( ℤ≥ ‘ 0 ) ) |
| 61 | f1ocnvfv2 | ⊢ ( ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 0 ) ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑚 ) ) = 𝑚 ) | |
| 62 | 18 60 61 | sylancr | ⊢ ( 𝑚 ∈ ℕ0 → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑚 ) ) = 𝑚 ) |
| 63 | 62 | oveq1d | ⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑚 ) ) + 1 ) = ( 𝑚 + 1 ) ) |
| 64 | 58 63 | eqtrd | ⊢ ( 𝑚 ∈ ℕ0 → ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝑚 ) ) = ( 𝑚 + 1 ) ) |
| 65 | f1ocnvfv | ⊢ ( ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 0 ) ∧ suc ( ◡ 𝐺 ‘ 𝑚 ) ∈ ω ) → ( ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝑚 ) ) = ( 𝑚 + 1 ) → ( ◡ 𝐺 ‘ ( 𝑚 + 1 ) ) = suc ( ◡ 𝐺 ‘ 𝑚 ) ) ) | |
| 66 | 56 64 65 | sylc | ⊢ ( 𝑚 ∈ ℕ0 → ( ◡ 𝐺 ‘ ( 𝑚 + 1 ) ) = suc ( ◡ 𝐺 ‘ 𝑚 ) ) |
| 67 | 66 | adantr | ⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 1 ... 𝑚 ) ≈ ( ◡ 𝐺 ‘ 𝑚 ) ) → ( ◡ 𝐺 ‘ ( 𝑚 + 1 ) ) = suc ( ◡ 𝐺 ‘ 𝑚 ) ) |
| 68 | df-suc | ⊢ suc ( ◡ 𝐺 ‘ 𝑚 ) = ( ( ◡ 𝐺 ‘ 𝑚 ) ∪ { ( ◡ 𝐺 ‘ 𝑚 ) } ) | |
| 69 | 67 68 | eqtrdi | ⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 1 ... 𝑚 ) ≈ ( ◡ 𝐺 ‘ 𝑚 ) ) → ( ◡ 𝐺 ‘ ( 𝑚 + 1 ) ) = ( ( ◡ 𝐺 ‘ 𝑚 ) ∪ { ( ◡ 𝐺 ‘ 𝑚 ) } ) ) |
| 70 | 44 53 69 | 3brtr4d | ⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 1 ... 𝑚 ) ≈ ( ◡ 𝐺 ‘ 𝑚 ) ) → ( 1 ... ( 𝑚 + 1 ) ) ≈ ( ◡ 𝐺 ‘ ( 𝑚 + 1 ) ) ) |
| 71 | 70 | ex | ⊢ ( 𝑚 ∈ ℕ0 → ( ( 1 ... 𝑚 ) ≈ ( ◡ 𝐺 ‘ 𝑚 ) → ( 1 ... ( 𝑚 + 1 ) ) ≈ ( ◡ 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) |
| 72 | 4 7 10 13 24 71 | nn0ind | ⊢ ( 𝑁 ∈ ℕ0 → ( 1 ... 𝑁 ) ≈ ( ◡ 𝐺 ‘ 𝑁 ) ) |