This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The mapping G is a one-to-one mapping from _om onto upper integers that will be used to construct a recursive definition generator. Ordinal natural number 0 maps to complex number C (normally 0 for the upper integers NN0 or 1 for the upper integers NN ), 1 maps to C + 1, etc. This theorem shows the value of G at ordinal natural number zero. (This series of theorems generalizes an earlier series for NN0 contributed by Raph Levien, 10-Apr-2004.) (Contributed by NM, 3-Oct-2004) (Revised by Mario Carneiro, 13-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | om2uz.1 | ⊢ 𝐶 ∈ ℤ | |
| om2uz.2 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) | ||
| Assertion | om2uz0i | ⊢ ( 𝐺 ‘ ∅ ) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | ⊢ 𝐶 ∈ ℤ | |
| 2 | om2uz.2 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) | |
| 3 | 2 | fveq1i | ⊢ ( 𝐺 ‘ ∅ ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) ‘ ∅ ) |
| 4 | fr0g | ⊢ ( 𝐶 ∈ ℤ → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) ‘ ∅ ) = 𝐶 ) | |
| 5 | 1 4 | ax-mp | ⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) ‘ ∅ ) = 𝐶 |
| 6 | 3 5 | eqtri | ⊢ ( 𝐺 ‘ ∅ ) = 𝐶 |