This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinality of a finite set of sequential integers with arbitrary endpoints. (Contributed by Mario Carneiro, 13-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fzennn.1 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) | |
| Assertion | fzen2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) ≈ ( ◡ 𝐺 ‘ ( ( 𝑁 + 1 ) − 𝑀 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzennn.1 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) | |
| 2 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 3 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 4 | 1z | ⊢ 1 ∈ ℤ | |
| 5 | zsubcl | ⊢ ( ( 1 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 1 − 𝑀 ) ∈ ℤ ) | |
| 6 | 4 2 5 | sylancr | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 1 − 𝑀 ) ∈ ℤ ) |
| 7 | fzen | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 1 − 𝑀 ) ∈ ℤ ) → ( 𝑀 ... 𝑁 ) ≈ ( ( 𝑀 + ( 1 − 𝑀 ) ) ... ( 𝑁 + ( 1 − 𝑀 ) ) ) ) | |
| 8 | 2 3 6 7 | syl3anc | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) ≈ ( ( 𝑀 + ( 1 − 𝑀 ) ) ... ( 𝑁 + ( 1 − 𝑀 ) ) ) ) |
| 9 | 2 | zcnd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℂ ) |
| 10 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 11 | pncan3 | ⊢ ( ( 𝑀 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑀 + ( 1 − 𝑀 ) ) = 1 ) | |
| 12 | 9 10 11 | sylancl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 + ( 1 − 𝑀 ) ) = 1 ) |
| 13 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 14 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 15 | addsubass | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 𝑀 ) = ( 𝑁 + ( 1 − 𝑀 ) ) ) | |
| 16 | 10 15 | mp3an2 | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 𝑀 ) = ( 𝑁 + ( 1 − 𝑀 ) ) ) |
| 17 | 13 14 16 | syl2an | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑁 + 1 ) − 𝑀 ) = ( 𝑁 + ( 1 − 𝑀 ) ) ) |
| 18 | 3 2 17 | syl2anc | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑁 + 1 ) − 𝑀 ) = ( 𝑁 + ( 1 − 𝑀 ) ) ) |
| 19 | 18 | eqcomd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + ( 1 − 𝑀 ) ) = ( ( 𝑁 + 1 ) − 𝑀 ) ) |
| 20 | 12 19 | oveq12d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 + ( 1 − 𝑀 ) ) ... ( 𝑁 + ( 1 − 𝑀 ) ) ) = ( 1 ... ( ( 𝑁 + 1 ) − 𝑀 ) ) ) |
| 21 | 8 20 | breqtrd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) ≈ ( 1 ... ( ( 𝑁 + 1 ) − 𝑀 ) ) ) |
| 22 | peano2uz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 23 | uznn0sub | ⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑁 + 1 ) − 𝑀 ) ∈ ℕ0 ) | |
| 24 | 1 | fzennn | ⊢ ( ( ( 𝑁 + 1 ) − 𝑀 ) ∈ ℕ0 → ( 1 ... ( ( 𝑁 + 1 ) − 𝑀 ) ) ≈ ( ◡ 𝐺 ‘ ( ( 𝑁 + 1 ) − 𝑀 ) ) ) |
| 25 | 22 23 24 | 3syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 1 ... ( ( 𝑁 + 1 ) − 𝑀 ) ) ≈ ( ◡ 𝐺 ‘ ( ( 𝑁 + 1 ) − 𝑀 ) ) ) |
| 26 | entr | ⊢ ( ( ( 𝑀 ... 𝑁 ) ≈ ( 1 ... ( ( 𝑁 + 1 ) − 𝑀 ) ) ∧ ( 1 ... ( ( 𝑁 + 1 ) − 𝑀 ) ) ≈ ( ◡ 𝐺 ‘ ( ( 𝑁 + 1 ) − 𝑀 ) ) ) → ( 𝑀 ... 𝑁 ) ≈ ( ◡ 𝐺 ‘ ( ( 𝑁 + 1 ) − 𝑀 ) ) ) | |
| 27 | 21 25 26 | syl2anc | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) ≈ ( ◡ 𝐺 ‘ ( ( 𝑁 + 1 ) − 𝑀 ) ) ) |