This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is full. (Contributed by AV, 2-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcestrcsetc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | |
| funcestrcsetc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | ||
| funcestrcsetc.b | ⊢ 𝐵 = ( Base ‘ 𝐸 ) | ||
| funcestrcsetc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| funcestrcsetc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | ||
| funcestrcsetc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) | ||
| funcestrcsetc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) | ||
| Assertion | fullestrcsetc | ⊢ ( 𝜑 → 𝐹 ( 𝐸 Full 𝑆 ) 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcestrcsetc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | |
| 2 | funcestrcsetc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| 3 | funcestrcsetc.b | ⊢ 𝐵 = ( Base ‘ 𝐸 ) | |
| 4 | funcestrcsetc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 5 | funcestrcsetc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 6 | funcestrcsetc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) | |
| 7 | funcestrcsetc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) | |
| 8 | 1 2 3 4 5 6 7 | funcestrcsetc | ⊢ ( 𝜑 → 𝐹 ( 𝐸 Func 𝑆 ) 𝐺 ) |
| 9 | 1 2 3 4 5 6 7 | funcestrcsetclem8 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ⟶ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 10 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑈 ∈ WUni ) |
| 11 | eqid | ⊢ ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 ) | |
| 12 | 1 2 3 4 5 6 | funcestrcsetclem2 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝑈 ) |
| 13 | 12 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝑈 ) |
| 14 | 1 2 3 4 5 6 | funcestrcsetclem2 | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝑈 ) |
| 15 | 14 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝑈 ) |
| 16 | 2 10 11 13 15 | elsetchom | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ℎ ∈ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ↔ ℎ : ( 𝐹 ‘ 𝑎 ) ⟶ ( 𝐹 ‘ 𝑏 ) ) ) |
| 17 | 1 2 3 4 5 6 | funcestrcsetclem1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑎 ) = ( Base ‘ 𝑎 ) ) |
| 18 | 17 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑎 ) = ( Base ‘ 𝑎 ) ) |
| 19 | 1 2 3 4 5 6 | funcestrcsetclem1 | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑏 ) = ( Base ‘ 𝑏 ) ) |
| 20 | 19 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑏 ) = ( Base ‘ 𝑏 ) ) |
| 21 | 18 20 | feq23d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ℎ : ( 𝐹 ‘ 𝑎 ) ⟶ ( 𝐹 ‘ 𝑏 ) ↔ ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) ) |
| 22 | 16 21 | bitrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ℎ ∈ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ↔ ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) ) |
| 23 | fvex | ⊢ ( Base ‘ 𝑏 ) ∈ V | |
| 24 | fvex | ⊢ ( Base ‘ 𝑎 ) ∈ V | |
| 25 | 23 24 | pm3.2i | ⊢ ( ( Base ‘ 𝑏 ) ∈ V ∧ ( Base ‘ 𝑎 ) ∈ V ) |
| 26 | elmapg | ⊢ ( ( ( Base ‘ 𝑏 ) ∈ V ∧ ( Base ‘ 𝑎 ) ∈ V ) → ( ℎ ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ↔ ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) ) | |
| 27 | 25 26 | mp1i | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ℎ ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ↔ ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) ) |
| 28 | 27 | biimpar | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) → ℎ ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) |
| 29 | equequ2 | ⊢ ( 𝑘 = ℎ → ( ℎ = 𝑘 ↔ ℎ = ℎ ) ) | |
| 30 | 29 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) ∧ 𝑘 = ℎ ) → ( ℎ = 𝑘 ↔ ℎ = ℎ ) ) |
| 31 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) → ℎ = ℎ ) | |
| 32 | 28 30 31 | rspcedvd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) → ∃ 𝑘 ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ℎ = 𝑘 ) |
| 33 | eqid | ⊢ ( Base ‘ 𝑎 ) = ( Base ‘ 𝑎 ) | |
| 34 | eqid | ⊢ ( Base ‘ 𝑏 ) = ( Base ‘ 𝑏 ) | |
| 35 | 1 2 3 4 5 6 7 33 34 | funcestrcsetclem6 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑘 ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) |
| 36 | 35 | 3expa | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) |
| 37 | 36 | eqeq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) → ( ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ↔ ℎ = 𝑘 ) ) |
| 38 | 37 | rexbidva | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ∃ 𝑘 ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ↔ ∃ 𝑘 ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ℎ = 𝑘 ) ) |
| 39 | 38 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) → ( ∃ 𝑘 ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ↔ ∃ 𝑘 ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ℎ = 𝑘 ) ) |
| 40 | 32 39 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) → ∃ 𝑘 ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ) |
| 41 | eqid | ⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) | |
| 42 | 1 5 | estrcbas | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐸 ) ) |
| 43 | 3 42 | eqtr4id | ⊢ ( 𝜑 → 𝐵 = 𝑈 ) |
| 44 | 43 | eleq2d | ⊢ ( 𝜑 → ( 𝑎 ∈ 𝐵 ↔ 𝑎 ∈ 𝑈 ) ) |
| 45 | 44 | biimpcd | ⊢ ( 𝑎 ∈ 𝐵 → ( 𝜑 → 𝑎 ∈ 𝑈 ) ) |
| 46 | 45 | adantr | ⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝜑 → 𝑎 ∈ 𝑈 ) ) |
| 47 | 46 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ 𝑈 ) |
| 48 | 43 | eleq2d | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝐵 ↔ 𝑏 ∈ 𝑈 ) ) |
| 49 | 48 | biimpcd | ⊢ ( 𝑏 ∈ 𝐵 → ( 𝜑 → 𝑏 ∈ 𝑈 ) ) |
| 50 | 49 | adantl | ⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝜑 → 𝑏 ∈ 𝑈 ) ) |
| 51 | 50 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ 𝑈 ) |
| 52 | 1 10 41 47 51 33 34 | estrchom | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) = ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) |
| 53 | 52 | rexeqdv | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ∃ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ↔ ∃ 𝑘 ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ) ) |
| 54 | 53 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) → ( ∃ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ↔ ∃ 𝑘 ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ) ) |
| 55 | 40 54 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) → ∃ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ) |
| 56 | 55 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ℎ : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) → ∃ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ) ) |
| 57 | 22 56 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ℎ ∈ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) → ∃ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ) ) |
| 58 | 57 | ralrimiv | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ∀ ℎ ∈ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ∃ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ) |
| 59 | dffo3 | ⊢ ( ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) –onto→ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ↔ ( ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ⟶ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ∧ ∀ ℎ ∈ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ∃ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ) ) | |
| 60 | 9 58 59 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) –onto→ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 61 | 60 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) –onto→ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 62 | 3 11 41 | isfull2 | ⊢ ( 𝐹 ( 𝐸 Full 𝑆 ) 𝐺 ↔ ( 𝐹 ( 𝐸 Func 𝑆 ) 𝐺 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) –onto→ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 63 | 8 61 62 | sylanbrc | ⊢ ( 𝜑 → 𝐹 ( 𝐸 Full 𝑆 ) 𝐺 ) |