This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 6 for funcestrcsetc . (Contributed by AV, 23-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcestrcsetc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | |
| funcestrcsetc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | ||
| funcestrcsetc.b | ⊢ 𝐵 = ( Base ‘ 𝐸 ) | ||
| funcestrcsetc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| funcestrcsetc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | ||
| funcestrcsetc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) | ||
| funcestrcsetc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) | ||
| funcestrcsetc.m | ⊢ 𝑀 = ( Base ‘ 𝑋 ) | ||
| funcestrcsetc.n | ⊢ 𝑁 = ( Base ‘ 𝑌 ) | ||
| Assertion | funcestrcsetclem6 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝐻 ∈ ( 𝑁 ↑m 𝑀 ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) = 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcestrcsetc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | |
| 2 | funcestrcsetc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| 3 | funcestrcsetc.b | ⊢ 𝐵 = ( Base ‘ 𝐸 ) | |
| 4 | funcestrcsetc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 5 | funcestrcsetc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 6 | funcestrcsetc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) | |
| 7 | funcestrcsetc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) | |
| 8 | funcestrcsetc.m | ⊢ 𝑀 = ( Base ‘ 𝑋 ) | |
| 9 | funcestrcsetc.n | ⊢ 𝑁 = ( Base ‘ 𝑌 ) | |
| 10 | 1 2 3 4 5 6 7 8 9 | funcestrcsetclem5 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 𝐺 𝑌 ) = ( I ↾ ( 𝑁 ↑m 𝑀 ) ) ) |
| 11 | 10 | 3adant3 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝐻 ∈ ( 𝑁 ↑m 𝑀 ) ) → ( 𝑋 𝐺 𝑌 ) = ( I ↾ ( 𝑁 ↑m 𝑀 ) ) ) |
| 12 | 11 | fveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝐻 ∈ ( 𝑁 ↑m 𝑀 ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) = ( ( I ↾ ( 𝑁 ↑m 𝑀 ) ) ‘ 𝐻 ) ) |
| 13 | fvresi | ⊢ ( 𝐻 ∈ ( 𝑁 ↑m 𝑀 ) → ( ( I ↾ ( 𝑁 ↑m 𝑀 ) ) ‘ 𝐻 ) = 𝐻 ) | |
| 14 | 13 | 3ad2ant3 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝐻 ∈ ( 𝑁 ↑m 𝑀 ) ) → ( ( I ↾ ( 𝑁 ↑m 𝑀 ) ) ‘ 𝐻 ) = 𝐻 ) |
| 15 | 12 14 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝐻 ∈ ( 𝑁 ↑m 𝑀 ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) = 𝐻 ) |