This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for funcestrcsetc . (Contributed by AV, 22-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcestrcsetc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | |
| funcestrcsetc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | ||
| funcestrcsetc.b | ⊢ 𝐵 = ( Base ‘ 𝐸 ) | ||
| funcestrcsetc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| funcestrcsetc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | ||
| funcestrcsetc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) | ||
| Assertion | funcestrcsetclem1 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) = ( Base ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcestrcsetc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | |
| 2 | funcestrcsetc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| 3 | funcestrcsetc.b | ⊢ 𝐵 = ( Base ‘ 𝐸 ) | |
| 4 | funcestrcsetc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 5 | funcestrcsetc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 6 | funcestrcsetc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) |
| 8 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( Base ‘ 𝑥 ) = ( Base ‘ 𝑋 ) ) | |
| 9 | 8 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 = 𝑋 ) → ( Base ‘ 𝑥 ) = ( Base ‘ 𝑋 ) ) |
| 10 | simpr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 11 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( Base ‘ 𝑋 ) ∈ V ) | |
| 12 | 7 9 10 11 | fvmptd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) = ( Base ‘ 𝑋 ) ) |