This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 8 for funcestrcsetc . (Contributed by AV, 15-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcestrcsetc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | |
| funcestrcsetc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | ||
| funcestrcsetc.b | ⊢ 𝐵 = ( Base ‘ 𝐸 ) | ||
| funcestrcsetc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| funcestrcsetc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | ||
| funcestrcsetc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) | ||
| funcestrcsetc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) | ||
| Assertion | funcestrcsetclem8 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 ( Hom ‘ 𝐸 ) 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcestrcsetc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | |
| 2 | funcestrcsetc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| 3 | funcestrcsetc.b | ⊢ 𝐵 = ( Base ‘ 𝐸 ) | |
| 4 | funcestrcsetc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 5 | funcestrcsetc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 6 | funcestrcsetc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) | |
| 7 | funcestrcsetc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) | |
| 8 | f1oi | ⊢ ( I ↾ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) : ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) –1-1-onto→ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) | |
| 9 | f1of | ⊢ ( ( I ↾ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) : ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) –1-1-onto→ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) → ( I ↾ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) : ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ⟶ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) | |
| 10 | 8 9 | mp1i | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( I ↾ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) : ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ⟶ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) |
| 11 | elmapi | ⊢ ( 𝑓 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) → 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) | |
| 12 | fvex | ⊢ ( Base ‘ 𝑌 ) ∈ V | |
| 13 | fvex | ⊢ ( Base ‘ 𝑋 ) ∈ V | |
| 14 | 12 13 | pm3.2i | ⊢ ( ( Base ‘ 𝑌 ) ∈ V ∧ ( Base ‘ 𝑋 ) ∈ V ) |
| 15 | elmapg | ⊢ ( ( ( Base ‘ 𝑌 ) ∈ V ∧ ( Base ‘ 𝑋 ) ∈ V ) → ( 𝑓 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ↔ 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) ) | |
| 16 | 15 | bicomd | ⊢ ( ( ( Base ‘ 𝑌 ) ∈ V ∧ ( Base ‘ 𝑋 ) ∈ V ) → ( 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ↔ 𝑓 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) ) |
| 17 | 14 16 | mp1i | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ↔ 𝑓 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) ) |
| 18 | 17 | biimpa | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) → 𝑓 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) |
| 19 | 1 2 3 4 5 6 | funcestrcsetclem1 | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑌 ) = ( Base ‘ 𝑌 ) ) |
| 20 | 19 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑌 ) = ( Base ‘ 𝑌 ) ) |
| 21 | 1 2 3 4 5 6 | funcestrcsetclem1 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) = ( Base ‘ 𝑋 ) ) |
| 22 | 21 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑋 ) = ( Base ‘ 𝑋 ) ) |
| 23 | 20 22 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑌 ) ↑m ( 𝐹 ‘ 𝑋 ) ) = ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) |
| 24 | 23 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑌 ) ↑m ( 𝐹 ‘ 𝑋 ) ) = ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) |
| 25 | 18 24 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) → 𝑓 ∈ ( ( 𝐹 ‘ 𝑌 ) ↑m ( 𝐹 ‘ 𝑋 ) ) ) |
| 26 | 25 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) → 𝑓 ∈ ( ( 𝐹 ‘ 𝑌 ) ↑m ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 27 | 11 26 | syl5 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑓 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) → 𝑓 ∈ ( ( 𝐹 ‘ 𝑌 ) ↑m ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 28 | 27 | ssrdv | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ⊆ ( ( 𝐹 ‘ 𝑌 ) ↑m ( 𝐹 ‘ 𝑋 ) ) ) |
| 29 | 10 28 | fssd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( I ↾ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) : ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ⟶ ( ( 𝐹 ‘ 𝑌 ) ↑m ( 𝐹 ‘ 𝑋 ) ) ) |
| 30 | eqid | ⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) | |
| 31 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 32 | 1 2 3 4 5 6 7 30 31 | funcestrcsetclem5 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 𝐺 𝑌 ) = ( I ↾ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) ) |
| 33 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑈 ∈ WUni ) |
| 34 | eqid | ⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) | |
| 35 | 1 5 | estrcbas | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐸 ) ) |
| 36 | 3 35 | eqtr4id | ⊢ ( 𝜑 → 𝐵 = 𝑈 ) |
| 37 | 36 | eleq2d | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ↔ 𝑋 ∈ 𝑈 ) ) |
| 38 | 37 | biimpcd | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝜑 → 𝑋 ∈ 𝑈 ) ) |
| 39 | 38 | adantr | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝜑 → 𝑋 ∈ 𝑈 ) ) |
| 40 | 39 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝑈 ) |
| 41 | 36 | eleq2d | ⊢ ( 𝜑 → ( 𝑌 ∈ 𝐵 ↔ 𝑌 ∈ 𝑈 ) ) |
| 42 | 41 | biimpd | ⊢ ( 𝜑 → ( 𝑌 ∈ 𝐵 → 𝑌 ∈ 𝑈 ) ) |
| 43 | 42 | adantld | ⊢ ( 𝜑 → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝑈 ) ) |
| 44 | 43 | imp | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ 𝑈 ) |
| 45 | 1 33 34 40 44 30 31 | estrchom | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( Hom ‘ 𝐸 ) 𝑌 ) = ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) |
| 46 | eqid | ⊢ ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 ) | |
| 47 | 1 2 3 4 5 6 | funcestrcsetclem2 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
| 48 | 47 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
| 49 | 1 2 3 4 5 6 | funcestrcsetclem2 | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑌 ) ∈ 𝑈 ) |
| 50 | 49 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑌 ) ∈ 𝑈 ) |
| 51 | 2 33 46 48 50 | setchom | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑌 ) ↑m ( 𝐹 ‘ 𝑋 ) ) ) |
| 52 | 32 45 51 | feq123d | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 𝐺 𝑌 ) : ( 𝑋 ( Hom ‘ 𝐸 ) 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑌 ) ) ↔ ( I ↾ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) : ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ⟶ ( ( 𝐹 ‘ 𝑌 ) ↑m ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 53 | 29 52 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 ( Hom ‘ 𝐸 ) 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑌 ) ) ) |