This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent condition for a full functor. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isfull.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| isfull.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | ||
| isfull.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| Assertion | isfull2 | ⊢ ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfull.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | isfull.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | |
| 3 | isfull.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 4 | 1 2 | isfull | ⊢ ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ran ( 𝑥 𝐺 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 5 | simpll | ⊢ ( ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | |
| 6 | simplr | ⊢ ( ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 7 | simpr | ⊢ ( ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) | |
| 8 | 1 3 2 5 6 7 | funcf2 | ⊢ ( ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
| 9 | ffn | ⊢ ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 𝐺 𝑦 ) Fn ( 𝑥 𝐻 𝑦 ) ) | |
| 10 | df-fo | ⊢ ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝑥 𝐺 𝑦 ) Fn ( 𝑥 𝐻 𝑦 ) ∧ ran ( 𝑥 𝐺 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 11 | 10 | baib | ⊢ ( ( 𝑥 𝐺 𝑦 ) Fn ( 𝑥 𝐻 𝑦 ) → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ ran ( 𝑥 𝐺 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 12 | 8 9 11 | 3syl | ⊢ ( ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ ran ( 𝑥 𝐺 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 13 | 12 | ralbidva | ⊢ ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ 𝑥 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ran ( 𝑥 𝐺 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 14 | 13 | ralbidva | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ran ( 𝑥 𝐺 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 15 | 14 | pm5.32i | ⊢ ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ran ( 𝑥 𝐺 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 16 | 4 15 | bitr4i | ⊢ ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |