This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is full. (Contributed by AV, 2-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcestrcsetc.e | |- E = ( ExtStrCat ` U ) |
|
| funcestrcsetc.s | |- S = ( SetCat ` U ) |
||
| funcestrcsetc.b | |- B = ( Base ` E ) |
||
| funcestrcsetc.c | |- C = ( Base ` S ) |
||
| funcestrcsetc.u | |- ( ph -> U e. WUni ) |
||
| funcestrcsetc.f | |- ( ph -> F = ( x e. B |-> ( Base ` x ) ) ) |
||
| funcestrcsetc.g | |- ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) ) |
||
| Assertion | fullestrcsetc | |- ( ph -> F ( E Full S ) G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcestrcsetc.e | |- E = ( ExtStrCat ` U ) |
|
| 2 | funcestrcsetc.s | |- S = ( SetCat ` U ) |
|
| 3 | funcestrcsetc.b | |- B = ( Base ` E ) |
|
| 4 | funcestrcsetc.c | |- C = ( Base ` S ) |
|
| 5 | funcestrcsetc.u | |- ( ph -> U e. WUni ) |
|
| 6 | funcestrcsetc.f | |- ( ph -> F = ( x e. B |-> ( Base ` x ) ) ) |
|
| 7 | funcestrcsetc.g | |- ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) ) |
|
| 8 | 1 2 3 4 5 6 7 | funcestrcsetc | |- ( ph -> F ( E Func S ) G ) |
| 9 | 1 2 3 4 5 6 7 | funcestrcsetclem8 | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( a G b ) : ( a ( Hom ` E ) b ) --> ( ( F ` a ) ( Hom ` S ) ( F ` b ) ) ) |
| 10 | 5 | adantr | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> U e. WUni ) |
| 11 | eqid | |- ( Hom ` S ) = ( Hom ` S ) |
|
| 12 | 1 2 3 4 5 6 | funcestrcsetclem2 | |- ( ( ph /\ a e. B ) -> ( F ` a ) e. U ) |
| 13 | 12 | adantrr | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( F ` a ) e. U ) |
| 14 | 1 2 3 4 5 6 | funcestrcsetclem2 | |- ( ( ph /\ b e. B ) -> ( F ` b ) e. U ) |
| 15 | 14 | adantrl | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( F ` b ) e. U ) |
| 16 | 2 10 11 13 15 | elsetchom | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( h e. ( ( F ` a ) ( Hom ` S ) ( F ` b ) ) <-> h : ( F ` a ) --> ( F ` b ) ) ) |
| 17 | 1 2 3 4 5 6 | funcestrcsetclem1 | |- ( ( ph /\ a e. B ) -> ( F ` a ) = ( Base ` a ) ) |
| 18 | 17 | adantrr | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( F ` a ) = ( Base ` a ) ) |
| 19 | 1 2 3 4 5 6 | funcestrcsetclem1 | |- ( ( ph /\ b e. B ) -> ( F ` b ) = ( Base ` b ) ) |
| 20 | 19 | adantrl | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( F ` b ) = ( Base ` b ) ) |
| 21 | 18 20 | feq23d | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( h : ( F ` a ) --> ( F ` b ) <-> h : ( Base ` a ) --> ( Base ` b ) ) ) |
| 22 | 16 21 | bitrd | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( h e. ( ( F ` a ) ( Hom ` S ) ( F ` b ) ) <-> h : ( Base ` a ) --> ( Base ` b ) ) ) |
| 23 | fvex | |- ( Base ` b ) e. _V |
|
| 24 | fvex | |- ( Base ` a ) e. _V |
|
| 25 | 23 24 | pm3.2i | |- ( ( Base ` b ) e. _V /\ ( Base ` a ) e. _V ) |
| 26 | elmapg | |- ( ( ( Base ` b ) e. _V /\ ( Base ` a ) e. _V ) -> ( h e. ( ( Base ` b ) ^m ( Base ` a ) ) <-> h : ( Base ` a ) --> ( Base ` b ) ) ) |
|
| 27 | 25 26 | mp1i | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( h e. ( ( Base ` b ) ^m ( Base ` a ) ) <-> h : ( Base ` a ) --> ( Base ` b ) ) ) |
| 28 | 27 | biimpar | |- ( ( ( ph /\ ( a e. B /\ b e. B ) ) /\ h : ( Base ` a ) --> ( Base ` b ) ) -> h e. ( ( Base ` b ) ^m ( Base ` a ) ) ) |
| 29 | equequ2 | |- ( k = h -> ( h = k <-> h = h ) ) |
|
| 30 | 29 | adantl | |- ( ( ( ( ph /\ ( a e. B /\ b e. B ) ) /\ h : ( Base ` a ) --> ( Base ` b ) ) /\ k = h ) -> ( h = k <-> h = h ) ) |
| 31 | eqidd | |- ( ( ( ph /\ ( a e. B /\ b e. B ) ) /\ h : ( Base ` a ) --> ( Base ` b ) ) -> h = h ) |
|
| 32 | 28 30 31 | rspcedvd | |- ( ( ( ph /\ ( a e. B /\ b e. B ) ) /\ h : ( Base ` a ) --> ( Base ` b ) ) -> E. k e. ( ( Base ` b ) ^m ( Base ` a ) ) h = k ) |
| 33 | eqid | |- ( Base ` a ) = ( Base ` a ) |
|
| 34 | eqid | |- ( Base ` b ) = ( Base ` b ) |
|
| 35 | 1 2 3 4 5 6 7 33 34 | funcestrcsetclem6 | |- ( ( ph /\ ( a e. B /\ b e. B ) /\ k e. ( ( Base ` b ) ^m ( Base ` a ) ) ) -> ( ( a G b ) ` k ) = k ) |
| 36 | 35 | 3expa | |- ( ( ( ph /\ ( a e. B /\ b e. B ) ) /\ k e. ( ( Base ` b ) ^m ( Base ` a ) ) ) -> ( ( a G b ) ` k ) = k ) |
| 37 | 36 | eqeq2d | |- ( ( ( ph /\ ( a e. B /\ b e. B ) ) /\ k e. ( ( Base ` b ) ^m ( Base ` a ) ) ) -> ( h = ( ( a G b ) ` k ) <-> h = k ) ) |
| 38 | 37 | rexbidva | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( E. k e. ( ( Base ` b ) ^m ( Base ` a ) ) h = ( ( a G b ) ` k ) <-> E. k e. ( ( Base ` b ) ^m ( Base ` a ) ) h = k ) ) |
| 39 | 38 | adantr | |- ( ( ( ph /\ ( a e. B /\ b e. B ) ) /\ h : ( Base ` a ) --> ( Base ` b ) ) -> ( E. k e. ( ( Base ` b ) ^m ( Base ` a ) ) h = ( ( a G b ) ` k ) <-> E. k e. ( ( Base ` b ) ^m ( Base ` a ) ) h = k ) ) |
| 40 | 32 39 | mpbird | |- ( ( ( ph /\ ( a e. B /\ b e. B ) ) /\ h : ( Base ` a ) --> ( Base ` b ) ) -> E. k e. ( ( Base ` b ) ^m ( Base ` a ) ) h = ( ( a G b ) ` k ) ) |
| 41 | eqid | |- ( Hom ` E ) = ( Hom ` E ) |
|
| 42 | 1 5 | estrcbas | |- ( ph -> U = ( Base ` E ) ) |
| 43 | 3 42 | eqtr4id | |- ( ph -> B = U ) |
| 44 | 43 | eleq2d | |- ( ph -> ( a e. B <-> a e. U ) ) |
| 45 | 44 | biimpcd | |- ( a e. B -> ( ph -> a e. U ) ) |
| 46 | 45 | adantr | |- ( ( a e. B /\ b e. B ) -> ( ph -> a e. U ) ) |
| 47 | 46 | impcom | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> a e. U ) |
| 48 | 43 | eleq2d | |- ( ph -> ( b e. B <-> b e. U ) ) |
| 49 | 48 | biimpcd | |- ( b e. B -> ( ph -> b e. U ) ) |
| 50 | 49 | adantl | |- ( ( a e. B /\ b e. B ) -> ( ph -> b e. U ) ) |
| 51 | 50 | impcom | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> b e. U ) |
| 52 | 1 10 41 47 51 33 34 | estrchom | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( a ( Hom ` E ) b ) = ( ( Base ` b ) ^m ( Base ` a ) ) ) |
| 53 | 52 | rexeqdv | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( E. k e. ( a ( Hom ` E ) b ) h = ( ( a G b ) ` k ) <-> E. k e. ( ( Base ` b ) ^m ( Base ` a ) ) h = ( ( a G b ) ` k ) ) ) |
| 54 | 53 | adantr | |- ( ( ( ph /\ ( a e. B /\ b e. B ) ) /\ h : ( Base ` a ) --> ( Base ` b ) ) -> ( E. k e. ( a ( Hom ` E ) b ) h = ( ( a G b ) ` k ) <-> E. k e. ( ( Base ` b ) ^m ( Base ` a ) ) h = ( ( a G b ) ` k ) ) ) |
| 55 | 40 54 | mpbird | |- ( ( ( ph /\ ( a e. B /\ b e. B ) ) /\ h : ( Base ` a ) --> ( Base ` b ) ) -> E. k e. ( a ( Hom ` E ) b ) h = ( ( a G b ) ` k ) ) |
| 56 | 55 | ex | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( h : ( Base ` a ) --> ( Base ` b ) -> E. k e. ( a ( Hom ` E ) b ) h = ( ( a G b ) ` k ) ) ) |
| 57 | 22 56 | sylbid | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( h e. ( ( F ` a ) ( Hom ` S ) ( F ` b ) ) -> E. k e. ( a ( Hom ` E ) b ) h = ( ( a G b ) ` k ) ) ) |
| 58 | 57 | ralrimiv | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> A. h e. ( ( F ` a ) ( Hom ` S ) ( F ` b ) ) E. k e. ( a ( Hom ` E ) b ) h = ( ( a G b ) ` k ) ) |
| 59 | dffo3 | |- ( ( a G b ) : ( a ( Hom ` E ) b ) -onto-> ( ( F ` a ) ( Hom ` S ) ( F ` b ) ) <-> ( ( a G b ) : ( a ( Hom ` E ) b ) --> ( ( F ` a ) ( Hom ` S ) ( F ` b ) ) /\ A. h e. ( ( F ` a ) ( Hom ` S ) ( F ` b ) ) E. k e. ( a ( Hom ` E ) b ) h = ( ( a G b ) ` k ) ) ) |
|
| 60 | 9 58 59 | sylanbrc | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( a G b ) : ( a ( Hom ` E ) b ) -onto-> ( ( F ` a ) ( Hom ` S ) ( F ` b ) ) ) |
| 61 | 60 | ralrimivva | |- ( ph -> A. a e. B A. b e. B ( a G b ) : ( a ( Hom ` E ) b ) -onto-> ( ( F ` a ) ( Hom ` S ) ( F ` b ) ) ) |
| 62 | 3 11 41 | isfull2 | |- ( F ( E Full S ) G <-> ( F ( E Func S ) G /\ A. a e. B A. b e. B ( a G b ) : ( a ( Hom ` E ) b ) -onto-> ( ( F ` a ) ( Hom ` S ) ( F ` b ) ) ) ) |
| 63 | 8 61 62 | sylanbrc | |- ( ph -> F ( E Full S ) G ) |