This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The morphisms between extensible structures are mappings between their base sets. (Contributed by AV, 7-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | estrcbas.c | ⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) | |
| estrcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| estrchomfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| estrchom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | ||
| estrchom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | ||
| estrchom.a | ⊢ 𝐴 = ( Base ‘ 𝑋 ) | ||
| estrchom.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| Assertion | estrchom | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝐵 ↑m 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | estrcbas.c | ⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) | |
| 2 | estrcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 3 | estrchomfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 4 | estrchom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | |
| 5 | estrchom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | |
| 6 | estrchom.a | ⊢ 𝐴 = ( Base ‘ 𝑋 ) | |
| 7 | estrchom.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 8 | 1 2 3 | estrchomfval | ⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |
| 9 | fveq2 | ⊢ ( 𝑦 = 𝑌 → ( Base ‘ 𝑦 ) = ( Base ‘ 𝑌 ) ) | |
| 10 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( Base ‘ 𝑥 ) = ( Base ‘ 𝑋 ) ) | |
| 11 | 9 10 | oveqan12rd | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) = ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) |
| 12 | 7 6 | oveq12i | ⊢ ( 𝐵 ↑m 𝐴 ) = ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) |
| 13 | 11 12 | eqtr4di | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) = ( 𝐵 ↑m 𝐴 ) ) |
| 14 | 13 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) = ( 𝐵 ↑m 𝐴 ) ) |
| 15 | ovexd | ⊢ ( 𝜑 → ( 𝐵 ↑m 𝐴 ) ∈ V ) | |
| 16 | 8 14 4 5 15 | ovmpod | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝐵 ↑m 𝐴 ) ) |