This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ftc1 . (Contributed by Mario Carneiro, 14-Aug-2014) (Proof shortened by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ftc1.g | ⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) | |
| ftc1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| ftc1.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ftc1.le | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| ftc1.s | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) | ||
| ftc1.d | ⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) | ||
| ftc1.i | ⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) | ||
| ftc1.c | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) | ||
| ftc1.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ 𝐶 ) ) | ||
| ftc1.j | ⊢ 𝐽 = ( 𝐿 ↾t ℝ ) | ||
| ftc1.k | ⊢ 𝐾 = ( 𝐿 ↾t 𝐷 ) | ||
| ftc1.l | ⊢ 𝐿 = ( TopOpen ‘ ℂfld ) | ||
| ftc1.h | ⊢ 𝐻 = ( 𝑧 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) | ||
| Assertion | ftc1lem6 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐻 limℂ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftc1.g | ⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) | |
| 2 | ftc1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 3 | ftc1.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 4 | ftc1.le | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 5 | ftc1.s | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) | |
| 6 | ftc1.d | ⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) | |
| 7 | ftc1.i | ⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) | |
| 8 | ftc1.c | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| 9 | ftc1.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ 𝐶 ) ) | |
| 10 | ftc1.j | ⊢ 𝐽 = ( 𝐿 ↾t ℝ ) | |
| 11 | ftc1.k | ⊢ 𝐾 = ( 𝐿 ↾t 𝐷 ) | |
| 12 | ftc1.l | ⊢ 𝐿 = ( TopOpen ‘ ℂfld ) | |
| 13 | ftc1.h | ⊢ 𝐻 = ( 𝑧 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) | |
| 14 | 1 2 3 4 5 6 7 8 9 10 11 12 | ftc1lem3 | ⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℂ ) |
| 15 | 5 8 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ 𝐷 ) |
| 16 | 14 15 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) |
| 17 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 18 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 19 | 6 18 | sstrdi | ⊢ ( 𝜑 → 𝐷 ⊆ ℂ ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → 𝐷 ⊆ ℂ ) |
| 21 | xmetres2 | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝐷 ⊆ ℂ ) → ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) ∈ ( ∞Met ‘ 𝐷 ) ) | |
| 22 | 17 20 21 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) ∈ ( ∞Met ‘ 𝐷 ) ) |
| 23 | 17 | a1i | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ) |
| 24 | eqid | ⊢ ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) = ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) | |
| 25 | 12 | cnfldtopn | ⊢ 𝐿 = ( MetOpen ‘ ( abs ∘ − ) ) |
| 26 | eqid | ⊢ ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) ) | |
| 27 | 24 25 26 | metrest | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝐷 ⊆ ℂ ) → ( 𝐿 ↾t 𝐷 ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) ) ) |
| 28 | 17 19 27 | sylancr | ⊢ ( 𝜑 → ( 𝐿 ↾t 𝐷 ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) ) ) |
| 29 | 11 28 | eqtrid | ⊢ ( 𝜑 → 𝐾 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) ) ) |
| 30 | 29 | oveq1d | ⊢ ( 𝜑 → ( 𝐾 CnP 𝐿 ) = ( ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) ) CnP 𝐿 ) ) |
| 31 | 30 | fveq1d | ⊢ ( 𝜑 → ( ( 𝐾 CnP 𝐿 ) ‘ 𝐶 ) = ( ( ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) ) CnP 𝐿 ) ‘ 𝐶 ) ) |
| 32 | 9 31 | eleqtrd | ⊢ ( 𝜑 → 𝐹 ∈ ( ( ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) ) CnP 𝐿 ) ‘ 𝐶 ) ) |
| 33 | 32 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → 𝐹 ∈ ( ( ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) ) CnP 𝐿 ) ‘ 𝐶 ) ) |
| 34 | simpr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → 𝑤 ∈ ℝ+ ) | |
| 35 | 26 25 | metcnpi2 | ⊢ ( ( ( ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) ∈ ( ∞Met ‘ 𝐷 ) ∧ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ) ∧ ( 𝐹 ∈ ( ( ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) ) CnP 𝐿 ) ‘ 𝐶 ) ∧ 𝑤 ∈ ℝ+ ) ) → ∃ 𝑣 ∈ ℝ+ ∀ 𝑦 ∈ 𝐷 ( ( 𝑦 ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) 𝐶 ) < 𝑣 → ( ( 𝐹 ‘ 𝑦 ) ( abs ∘ − ) ( 𝐹 ‘ 𝐶 ) ) < 𝑤 ) ) |
| 36 | 22 23 33 34 35 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ∃ 𝑣 ∈ ℝ+ ∀ 𝑦 ∈ 𝐷 ( ( 𝑦 ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) 𝐶 ) < 𝑣 → ( ( 𝐹 ‘ 𝑦 ) ( abs ∘ − ) ( 𝐹 ‘ 𝐶 ) ) < 𝑤 ) ) |
| 37 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ 𝐷 ) | |
| 38 | 15 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝐷 ) → 𝐶 ∈ 𝐷 ) |
| 39 | 37 38 | ovresd | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝑦 ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) 𝐶 ) = ( 𝑦 ( abs ∘ − ) 𝐶 ) ) |
| 40 | 19 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) → 𝐷 ⊆ ℂ ) |
| 41 | 40 | sselda | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ ℂ ) |
| 42 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 43 | 2 3 42 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 44 | 43 18 | sstrdi | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 45 | ioossicc | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) | |
| 46 | 45 8 | sselid | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 47 | 44 46 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 48 | 47 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝐷 ) → 𝐶 ∈ ℂ ) |
| 49 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 50 | 49 | cnmetdval | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝑦 ( abs ∘ − ) 𝐶 ) = ( abs ‘ ( 𝑦 − 𝐶 ) ) ) |
| 51 | 41 48 50 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝑦 ( abs ∘ − ) 𝐶 ) = ( abs ‘ ( 𝑦 − 𝐶 ) ) ) |
| 52 | 39 51 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝑦 ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) 𝐶 ) = ( abs ‘ ( 𝑦 − 𝐶 ) ) ) |
| 53 | 52 | breq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑦 ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) 𝐶 ) < 𝑣 ↔ ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 ) ) |
| 54 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) → 𝐹 : 𝐷 ⟶ ℂ ) |
| 55 | 54 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 56 | 16 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) |
| 57 | 49 | cnmetdval | ⊢ ( ( ( 𝐹 ‘ 𝑦 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) → ( ( 𝐹 ‘ 𝑦 ) ( abs ∘ − ) ( 𝐹 ‘ 𝐶 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) ) |
| 58 | 55 56 57 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑦 ) ( abs ∘ − ) ( 𝐹 ‘ 𝐶 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) ) |
| 59 | 58 | breq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝐷 ) → ( ( ( 𝐹 ‘ 𝑦 ) ( abs ∘ − ) ( 𝐹 ‘ 𝐶 ) ) < 𝑤 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) |
| 60 | 53 59 | imbi12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝐷 ) → ( ( ( 𝑦 ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) 𝐶 ) < 𝑣 → ( ( 𝐹 ‘ 𝑦 ) ( abs ∘ − ) ( 𝐹 ‘ 𝐶 ) ) < 𝑤 ) ↔ ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ) |
| 61 | 60 | ralbidva | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) → ( ∀ 𝑦 ∈ 𝐷 ( ( 𝑦 ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) 𝐶 ) < 𝑣 → ( ( 𝐹 ‘ 𝑦 ) ( abs ∘ − ) ( 𝐹 ‘ 𝐶 ) ) < 𝑤 ) ↔ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ) |
| 62 | simprll | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ) | |
| 63 | eldifsni | ⊢ ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) → 𝑠 ≠ 𝐶 ) | |
| 64 | 62 63 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → 𝑠 ≠ 𝐶 ) |
| 65 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → 𝐴 ∈ ℝ ) |
| 66 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → 𝐵 ∈ ℝ ) |
| 67 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → 𝐴 ≤ 𝐵 ) |
| 68 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) |
| 69 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → 𝐷 ⊆ ℝ ) |
| 70 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → 𝐹 ∈ 𝐿1 ) |
| 71 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 72 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → 𝐹 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ 𝐶 ) ) |
| 73 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → 𝑤 ∈ ℝ+ ) | |
| 74 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → 𝑣 ∈ ℝ+ ) | |
| 75 | simprlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) | |
| 76 | fvoveq1 | ⊢ ( 𝑦 = 𝑢 → ( abs ‘ ( 𝑦 − 𝐶 ) ) = ( abs ‘ ( 𝑢 − 𝐶 ) ) ) | |
| 77 | 76 | breq1d | ⊢ ( 𝑦 = 𝑢 → ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 ↔ ( abs ‘ ( 𝑢 − 𝐶 ) ) < 𝑣 ) ) |
| 78 | 77 | imbrov2fvoveq | ⊢ ( 𝑦 = 𝑢 → ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ↔ ( ( abs ‘ ( 𝑢 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑢 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ) |
| 79 | 78 | rspccva | ⊢ ( ( ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ∧ 𝑢 ∈ 𝐷 ) → ( ( abs ‘ ( 𝑢 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑢 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) |
| 80 | 75 79 | sylan | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) ∧ 𝑢 ∈ 𝐷 ) → ( ( abs ‘ ( 𝑢 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑢 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) |
| 81 | 62 | eldifad | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 82 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) | |
| 83 | 1 65 66 67 68 69 70 71 72 10 11 12 13 73 74 80 81 82 | ftc1lem5 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) ∧ 𝑠 ≠ 𝐶 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) |
| 84 | 64 83 | mpdan | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) |
| 85 | 84 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ) → ( ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) |
| 86 | 85 | adantld | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ) → ( ( 𝑠 ≠ 𝐶 ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) |
| 87 | 86 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ) → ( ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) → ( ( 𝑠 ≠ 𝐶 ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ) |
| 88 | 87 | ralrimdva | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) → ( ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) → ∀ 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ( ( 𝑠 ≠ 𝐶 ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ) |
| 89 | 61 88 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) → ( ∀ 𝑦 ∈ 𝐷 ( ( 𝑦 ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) 𝐶 ) < 𝑣 → ( ( 𝐹 ‘ 𝑦 ) ( abs ∘ − ) ( 𝐹 ‘ 𝐶 ) ) < 𝑤 ) → ∀ 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ( ( 𝑠 ≠ 𝐶 ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ) |
| 90 | 89 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑣 ∈ ℝ+ ) → ( ∀ 𝑦 ∈ 𝐷 ( ( 𝑦 ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) 𝐶 ) < 𝑣 → ( ( 𝐹 ‘ 𝑦 ) ( abs ∘ − ) ( 𝐹 ‘ 𝐶 ) ) < 𝑤 ) → ∀ 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ( ( 𝑠 ≠ 𝐶 ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ) |
| 91 | 90 | reximdva | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ( ∃ 𝑣 ∈ ℝ+ ∀ 𝑦 ∈ 𝐷 ( ( 𝑦 ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) 𝐶 ) < 𝑣 → ( ( 𝐹 ‘ 𝑦 ) ( abs ∘ − ) ( 𝐹 ‘ 𝐶 ) ) < 𝑤 ) → ∃ 𝑣 ∈ ℝ+ ∀ 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ( ( 𝑠 ≠ 𝐶 ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ) |
| 92 | 36 91 | mpd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ∃ 𝑣 ∈ ℝ+ ∀ 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ( ( 𝑠 ≠ 𝐶 ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) |
| 93 | 92 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑤 ∈ ℝ+ ∃ 𝑣 ∈ ℝ+ ∀ 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ( ( 𝑠 ≠ 𝐶 ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) |
| 94 | 1 2 3 4 5 6 7 14 | ftc1lem2 | ⊢ ( 𝜑 → 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 95 | 94 44 46 | dvlem | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ) → ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ∈ ℂ ) |
| 96 | 95 13 | fmptd | ⊢ ( 𝜑 → 𝐻 : ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ⟶ ℂ ) |
| 97 | 44 | ssdifssd | ⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ⊆ ℂ ) |
| 98 | 96 97 47 | ellimc3 | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐻 limℂ 𝐶 ) ↔ ( ( 𝐹 ‘ 𝐶 ) ∈ ℂ ∧ ∀ 𝑤 ∈ ℝ+ ∃ 𝑣 ∈ ℝ+ ∀ 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ( ( 𝑠 ≠ 𝐶 ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ) ) |
| 99 | 16 93 98 | mpbir2and | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐻 limℂ 𝐶 ) ) |