This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Epsilon-delta property of a continuous metric space function, with swapped distance function arguments as in metcnp2 . (Contributed by NM, 16-Dec-2007) (Revised by Mario Carneiro, 13-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metcn.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| metcn.4 | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | ||
| Assertion | metcnpi2 | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) → ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) < 𝑥 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metcn.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| 2 | metcn.4 | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | |
| 3 | simpr | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) | |
| 4 | simpll | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 5 | simplr | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) | |
| 6 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 7 | 6 | cnprcl | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝑃 ∈ ∪ 𝐽 ) |
| 8 | 7 | adantl | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝑃 ∈ ∪ 𝐽 ) |
| 9 | 1 | mopnuni | ⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 10 | 9 | ad2antrr | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝑋 = ∪ 𝐽 ) |
| 11 | 8 10 | eleqtrrd | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝑃 ∈ 𝑋 ) |
| 12 | 1 2 | metcnp2 | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑧 ∈ ℝ+ ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) < 𝑥 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑧 ) ) ) ) |
| 13 | 4 5 11 12 | syl3anc | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑧 ∈ ℝ+ ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) < 𝑥 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑧 ) ) ) ) |
| 14 | 3 13 | mpbid | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑧 ∈ ℝ+ ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) < 𝑥 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑧 ) ) ) |
| 15 | breq2 | ⊢ ( 𝑧 = 𝐴 → ( ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑧 ↔ ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝐴 ) ) | |
| 16 | 15 | imbi2d | ⊢ ( 𝑧 = 𝐴 → ( ( ( 𝑦 𝐶 𝑃 ) < 𝑥 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑧 ) ↔ ( ( 𝑦 𝐶 𝑃 ) < 𝑥 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝐴 ) ) ) |
| 17 | 16 | rexralbidv | ⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) < 𝑥 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑧 ) ↔ ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) < 𝑥 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝐴 ) ) ) |
| 18 | 17 | rspccv | ⊢ ( ∀ 𝑧 ∈ ℝ+ ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) < 𝑥 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑧 ) → ( 𝐴 ∈ ℝ+ → ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) < 𝑥 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝐴 ) ) ) |
| 19 | 14 18 | simpl2im | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ( 𝐴 ∈ ℝ+ → ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) < 𝑥 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝐴 ) ) ) |
| 20 | 19 | impr | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) → ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) < 𝑥 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝐴 ) ) |