This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ftc1 . (Contributed by Mario Carneiro, 14-Aug-2014) (Proof shortened by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ftc1.g | |- G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t ) |
|
| ftc1.a | |- ( ph -> A e. RR ) |
||
| ftc1.b | |- ( ph -> B e. RR ) |
||
| ftc1.le | |- ( ph -> A <_ B ) |
||
| ftc1.s | |- ( ph -> ( A (,) B ) C_ D ) |
||
| ftc1.d | |- ( ph -> D C_ RR ) |
||
| ftc1.i | |- ( ph -> F e. L^1 ) |
||
| ftc1.c | |- ( ph -> C e. ( A (,) B ) ) |
||
| ftc1.f | |- ( ph -> F e. ( ( K CnP L ) ` C ) ) |
||
| ftc1.j | |- J = ( L |`t RR ) |
||
| ftc1.k | |- K = ( L |`t D ) |
||
| ftc1.l | |- L = ( TopOpen ` CCfld ) |
||
| ftc1.h | |- H = ( z e. ( ( A [,] B ) \ { C } ) |-> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) |
||
| Assertion | ftc1lem6 | |- ( ph -> ( F ` C ) e. ( H limCC C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftc1.g | |- G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t ) |
|
| 2 | ftc1.a | |- ( ph -> A e. RR ) |
|
| 3 | ftc1.b | |- ( ph -> B e. RR ) |
|
| 4 | ftc1.le | |- ( ph -> A <_ B ) |
|
| 5 | ftc1.s | |- ( ph -> ( A (,) B ) C_ D ) |
|
| 6 | ftc1.d | |- ( ph -> D C_ RR ) |
|
| 7 | ftc1.i | |- ( ph -> F e. L^1 ) |
|
| 8 | ftc1.c | |- ( ph -> C e. ( A (,) B ) ) |
|
| 9 | ftc1.f | |- ( ph -> F e. ( ( K CnP L ) ` C ) ) |
|
| 10 | ftc1.j | |- J = ( L |`t RR ) |
|
| 11 | ftc1.k | |- K = ( L |`t D ) |
|
| 12 | ftc1.l | |- L = ( TopOpen ` CCfld ) |
|
| 13 | ftc1.h | |- H = ( z e. ( ( A [,] B ) \ { C } ) |-> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) |
|
| 14 | 1 2 3 4 5 6 7 8 9 10 11 12 | ftc1lem3 | |- ( ph -> F : D --> CC ) |
| 15 | 5 8 | sseldd | |- ( ph -> C e. D ) |
| 16 | 14 15 | ffvelcdmd | |- ( ph -> ( F ` C ) e. CC ) |
| 17 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 18 | ax-resscn | |- RR C_ CC |
|
| 19 | 6 18 | sstrdi | |- ( ph -> D C_ CC ) |
| 20 | 19 | adantr | |- ( ( ph /\ w e. RR+ ) -> D C_ CC ) |
| 21 | xmetres2 | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ D C_ CC ) -> ( ( abs o. - ) |` ( D X. D ) ) e. ( *Met ` D ) ) |
|
| 22 | 17 20 21 | sylancr | |- ( ( ph /\ w e. RR+ ) -> ( ( abs o. - ) |` ( D X. D ) ) e. ( *Met ` D ) ) |
| 23 | 17 | a1i | |- ( ( ph /\ w e. RR+ ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
| 24 | eqid | |- ( ( abs o. - ) |` ( D X. D ) ) = ( ( abs o. - ) |` ( D X. D ) ) |
|
| 25 | 12 | cnfldtopn | |- L = ( MetOpen ` ( abs o. - ) ) |
| 26 | eqid | |- ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) |
|
| 27 | 24 25 26 | metrest | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ D C_ CC ) -> ( L |`t D ) = ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) ) |
| 28 | 17 19 27 | sylancr | |- ( ph -> ( L |`t D ) = ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) ) |
| 29 | 11 28 | eqtrid | |- ( ph -> K = ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) ) |
| 30 | 29 | oveq1d | |- ( ph -> ( K CnP L ) = ( ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) CnP L ) ) |
| 31 | 30 | fveq1d | |- ( ph -> ( ( K CnP L ) ` C ) = ( ( ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) CnP L ) ` C ) ) |
| 32 | 9 31 | eleqtrd | |- ( ph -> F e. ( ( ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) CnP L ) ` C ) ) |
| 33 | 32 | adantr | |- ( ( ph /\ w e. RR+ ) -> F e. ( ( ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) CnP L ) ` C ) ) |
| 34 | simpr | |- ( ( ph /\ w e. RR+ ) -> w e. RR+ ) |
|
| 35 | 26 25 | metcnpi2 | |- ( ( ( ( ( abs o. - ) |` ( D X. D ) ) e. ( *Met ` D ) /\ ( abs o. - ) e. ( *Met ` CC ) ) /\ ( F e. ( ( ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) CnP L ) ` C ) /\ w e. RR+ ) ) -> E. v e. RR+ A. y e. D ( ( y ( ( abs o. - ) |` ( D X. D ) ) C ) < v -> ( ( F ` y ) ( abs o. - ) ( F ` C ) ) < w ) ) |
| 36 | 22 23 33 34 35 | syl22anc | |- ( ( ph /\ w e. RR+ ) -> E. v e. RR+ A. y e. D ( ( y ( ( abs o. - ) |` ( D X. D ) ) C ) < v -> ( ( F ` y ) ( abs o. - ) ( F ` C ) ) < w ) ) |
| 37 | simpr | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> y e. D ) |
|
| 38 | 15 | ad2antrr | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> C e. D ) |
| 39 | 37 38 | ovresd | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> ( y ( ( abs o. - ) |` ( D X. D ) ) C ) = ( y ( abs o. - ) C ) ) |
| 40 | 19 | adantr | |- ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) -> D C_ CC ) |
| 41 | 40 | sselda | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> y e. CC ) |
| 42 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 43 | 2 3 42 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |
| 44 | 43 18 | sstrdi | |- ( ph -> ( A [,] B ) C_ CC ) |
| 45 | ioossicc | |- ( A (,) B ) C_ ( A [,] B ) |
|
| 46 | 45 8 | sselid | |- ( ph -> C e. ( A [,] B ) ) |
| 47 | 44 46 | sseldd | |- ( ph -> C e. CC ) |
| 48 | 47 | ad2antrr | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> C e. CC ) |
| 49 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 50 | 49 | cnmetdval | |- ( ( y e. CC /\ C e. CC ) -> ( y ( abs o. - ) C ) = ( abs ` ( y - C ) ) ) |
| 51 | 41 48 50 | syl2anc | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> ( y ( abs o. - ) C ) = ( abs ` ( y - C ) ) ) |
| 52 | 39 51 | eqtrd | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> ( y ( ( abs o. - ) |` ( D X. D ) ) C ) = ( abs ` ( y - C ) ) ) |
| 53 | 52 | breq1d | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> ( ( y ( ( abs o. - ) |` ( D X. D ) ) C ) < v <-> ( abs ` ( y - C ) ) < v ) ) |
| 54 | 14 | adantr | |- ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) -> F : D --> CC ) |
| 55 | 54 | ffvelcdmda | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> ( F ` y ) e. CC ) |
| 56 | 16 | ad2antrr | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> ( F ` C ) e. CC ) |
| 57 | 49 | cnmetdval | |- ( ( ( F ` y ) e. CC /\ ( F ` C ) e. CC ) -> ( ( F ` y ) ( abs o. - ) ( F ` C ) ) = ( abs ` ( ( F ` y ) - ( F ` C ) ) ) ) |
| 58 | 55 56 57 | syl2anc | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> ( ( F ` y ) ( abs o. - ) ( F ` C ) ) = ( abs ` ( ( F ` y ) - ( F ` C ) ) ) ) |
| 59 | 58 | breq1d | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> ( ( ( F ` y ) ( abs o. - ) ( F ` C ) ) < w <-> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) |
| 60 | 53 59 | imbi12d | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> ( ( ( y ( ( abs o. - ) |` ( D X. D ) ) C ) < v -> ( ( F ` y ) ( abs o. - ) ( F ` C ) ) < w ) <-> ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) ) |
| 61 | 60 | ralbidva | |- ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) -> ( A. y e. D ( ( y ( ( abs o. - ) |` ( D X. D ) ) C ) < v -> ( ( F ` y ) ( abs o. - ) ( F ` C ) ) < w ) <-> A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) ) |
| 62 | simprll | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> s e. ( ( A [,] B ) \ { C } ) ) |
|
| 63 | eldifsni | |- ( s e. ( ( A [,] B ) \ { C } ) -> s =/= C ) |
|
| 64 | 62 63 | syl | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> s =/= C ) |
| 65 | 2 | ad2antrr | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> A e. RR ) |
| 66 | 3 | ad2antrr | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> B e. RR ) |
| 67 | 4 | ad2antrr | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> A <_ B ) |
| 68 | 5 | ad2antrr | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> ( A (,) B ) C_ D ) |
| 69 | 6 | ad2antrr | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> D C_ RR ) |
| 70 | 7 | ad2antrr | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> F e. L^1 ) |
| 71 | 8 | ad2antrr | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> C e. ( A (,) B ) ) |
| 72 | 9 | ad2antrr | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> F e. ( ( K CnP L ) ` C ) ) |
| 73 | simplrl | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> w e. RR+ ) |
|
| 74 | simplrr | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> v e. RR+ ) |
|
| 75 | simprlr | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) |
|
| 76 | fvoveq1 | |- ( y = u -> ( abs ` ( y - C ) ) = ( abs ` ( u - C ) ) ) |
|
| 77 | 76 | breq1d | |- ( y = u -> ( ( abs ` ( y - C ) ) < v <-> ( abs ` ( u - C ) ) < v ) ) |
| 78 | 77 | imbrov2fvoveq | |- ( y = u -> ( ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) <-> ( ( abs ` ( u - C ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` C ) ) ) < w ) ) ) |
| 79 | 78 | rspccva | |- ( ( A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) /\ u e. D ) -> ( ( abs ` ( u - C ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` C ) ) ) < w ) ) |
| 80 | 75 79 | sylan | |- ( ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) /\ u e. D ) -> ( ( abs ` ( u - C ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` C ) ) ) < w ) ) |
| 81 | 62 | eldifad | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> s e. ( A [,] B ) ) |
| 82 | simprr | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> ( abs ` ( s - C ) ) < v ) |
|
| 83 | 1 65 66 67 68 69 70 71 72 10 11 12 13 73 74 80 81 82 | ftc1lem5 | |- ( ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) /\ s =/= C ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) |
| 84 | 64 83 | mpdan | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) |
| 85 | 84 | expr | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) ) -> ( ( abs ` ( s - C ) ) < v -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) |
| 86 | 85 | adantld | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) ) -> ( ( s =/= C /\ ( abs ` ( s - C ) ) < v ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) |
| 87 | 86 | expr | |- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ s e. ( ( A [,] B ) \ { C } ) ) -> ( A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) -> ( ( s =/= C /\ ( abs ` ( s - C ) ) < v ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) ) |
| 88 | 87 | ralrimdva | |- ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) -> ( A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) -> A. s e. ( ( A [,] B ) \ { C } ) ( ( s =/= C /\ ( abs ` ( s - C ) ) < v ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) ) |
| 89 | 61 88 | sylbid | |- ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) -> ( A. y e. D ( ( y ( ( abs o. - ) |` ( D X. D ) ) C ) < v -> ( ( F ` y ) ( abs o. - ) ( F ` C ) ) < w ) -> A. s e. ( ( A [,] B ) \ { C } ) ( ( s =/= C /\ ( abs ` ( s - C ) ) < v ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) ) |
| 90 | 89 | anassrs | |- ( ( ( ph /\ w e. RR+ ) /\ v e. RR+ ) -> ( A. y e. D ( ( y ( ( abs o. - ) |` ( D X. D ) ) C ) < v -> ( ( F ` y ) ( abs o. - ) ( F ` C ) ) < w ) -> A. s e. ( ( A [,] B ) \ { C } ) ( ( s =/= C /\ ( abs ` ( s - C ) ) < v ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) ) |
| 91 | 90 | reximdva | |- ( ( ph /\ w e. RR+ ) -> ( E. v e. RR+ A. y e. D ( ( y ( ( abs o. - ) |` ( D X. D ) ) C ) < v -> ( ( F ` y ) ( abs o. - ) ( F ` C ) ) < w ) -> E. v e. RR+ A. s e. ( ( A [,] B ) \ { C } ) ( ( s =/= C /\ ( abs ` ( s - C ) ) < v ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) ) |
| 92 | 36 91 | mpd | |- ( ( ph /\ w e. RR+ ) -> E. v e. RR+ A. s e. ( ( A [,] B ) \ { C } ) ( ( s =/= C /\ ( abs ` ( s - C ) ) < v ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) |
| 93 | 92 | ralrimiva | |- ( ph -> A. w e. RR+ E. v e. RR+ A. s e. ( ( A [,] B ) \ { C } ) ( ( s =/= C /\ ( abs ` ( s - C ) ) < v ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) |
| 94 | 1 2 3 4 5 6 7 14 | ftc1lem2 | |- ( ph -> G : ( A [,] B ) --> CC ) |
| 95 | 94 44 46 | dvlem | |- ( ( ph /\ z e. ( ( A [,] B ) \ { C } ) ) -> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) e. CC ) |
| 96 | 95 13 | fmptd | |- ( ph -> H : ( ( A [,] B ) \ { C } ) --> CC ) |
| 97 | 44 | ssdifssd | |- ( ph -> ( ( A [,] B ) \ { C } ) C_ CC ) |
| 98 | 96 97 47 | ellimc3 | |- ( ph -> ( ( F ` C ) e. ( H limCC C ) <-> ( ( F ` C ) e. CC /\ A. w e. RR+ E. v e. RR+ A. s e. ( ( A [,] B ) \ { C } ) ( ( s =/= C /\ ( abs ` ( s - C ) ) < v ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) ) ) |
| 99 | 16 93 98 | mpbir2and | |- ( ph -> ( F ` C ) e. ( H limCC C ) ) |