This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law of general well-founded recursion, part one. This theorem and the following two drop the partial order requirement from fpr1 , fpr2 , and fpr3 , which requires using the axiom of infinity (Contributed by Scott Fenton, 11-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frr.1 | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) | |
| Assertion | frr1 | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝐹 Fn 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frr.1 | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) | |
| 2 | eqid | ⊢ { 𝑎 ∣ ∃ 𝑏 ( 𝑎 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑐 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑐 ) ⊆ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝑏 ( 𝑎 ‘ 𝑐 ) = ( 𝑐 𝐺 ( 𝑎 ↾ Pred ( 𝑅 , 𝐴 , 𝑐 ) ) ) ) } = { 𝑎 ∣ ∃ 𝑏 ( 𝑎 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑐 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑐 ) ⊆ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝑏 ( 𝑎 ‘ 𝑐 ) = ( 𝑐 𝐺 ( 𝑎 ↾ Pred ( 𝑅 , 𝐴 , 𝑐 ) ) ) ) } | |
| 3 | 2 | frrlem1 | ⊢ { 𝑎 ∣ ∃ 𝑏 ( 𝑎 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑐 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑐 ) ⊆ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝑏 ( 𝑎 ‘ 𝑐 ) = ( 𝑐 𝐺 ( 𝑎 ↾ Pred ( 𝑅 , 𝐴 , 𝑐 ) ) ) ) } = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } |
| 4 | 3 1 | frrlem15 | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ { 𝑎 ∣ ∃ 𝑏 ( 𝑎 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑐 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑐 ) ⊆ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝑏 ( 𝑎 ‘ 𝑐 ) = ( 𝑐 𝐺 ( 𝑎 ↾ Pred ( 𝑅 , 𝐴 , 𝑐 ) ) ) ) } ∧ ℎ ∈ { 𝑎 ∣ ∃ 𝑏 ( 𝑎 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑐 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑐 ) ⊆ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝑏 ( 𝑎 ‘ 𝑐 ) = ( 𝑐 𝐺 ( 𝑎 ↾ Pred ( 𝑅 , 𝐴 , 𝑐 ) ) ) ) } ) ) → ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 5 | 3 1 4 | frrlem9 | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → Fun 𝐹 ) |
| 6 | eqid | ⊢ ( ( 𝐹 ↾ Pred ( t++ ( 𝑅 ↾ 𝐴 ) , 𝐴 , 𝑧 ) ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) = ( ( 𝐹 ↾ Pred ( t++ ( 𝑅 ↾ 𝐴 ) , 𝐴 , 𝑧 ) ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) | |
| 7 | simpl | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝑅 Fr 𝐴 ) | |
| 8 | predres | ⊢ Pred ( 𝑅 , 𝐴 , 𝑧 ) = Pred ( ( 𝑅 ↾ 𝐴 ) , 𝐴 , 𝑧 ) | |
| 9 | relres | ⊢ Rel ( 𝑅 ↾ 𝐴 ) | |
| 10 | ssttrcl | ⊢ ( Rel ( 𝑅 ↾ 𝐴 ) → ( 𝑅 ↾ 𝐴 ) ⊆ t++ ( 𝑅 ↾ 𝐴 ) ) | |
| 11 | predrelss | ⊢ ( ( 𝑅 ↾ 𝐴 ) ⊆ t++ ( 𝑅 ↾ 𝐴 ) → Pred ( ( 𝑅 ↾ 𝐴 ) , 𝐴 , 𝑧 ) ⊆ Pred ( t++ ( 𝑅 ↾ 𝐴 ) , 𝐴 , 𝑧 ) ) | |
| 12 | 9 10 11 | mp2b | ⊢ Pred ( ( 𝑅 ↾ 𝐴 ) , 𝐴 , 𝑧 ) ⊆ Pred ( t++ ( 𝑅 ↾ 𝐴 ) , 𝐴 , 𝑧 ) |
| 13 | 8 12 | eqsstri | ⊢ Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ Pred ( t++ ( 𝑅 ↾ 𝐴 ) , 𝐴 , 𝑧 ) |
| 14 | 13 | a1i | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ Pred ( t++ ( 𝑅 ↾ 𝐴 ) , 𝐴 , 𝑧 ) ) |
| 15 | frrlem16 | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → ∀ 𝑎 ∈ Pred ( t++ ( 𝑅 ↾ 𝐴 ) , 𝐴 , 𝑧 ) Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ Pred ( t++ ( 𝑅 ↾ 𝐴 ) , 𝐴 , 𝑧 ) ) | |
| 16 | ttrclse | ⊢ ( 𝑅 Se 𝐴 → t++ ( 𝑅 ↾ 𝐴 ) Se 𝐴 ) | |
| 17 | setlikespec | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ t++ ( 𝑅 ↾ 𝐴 ) Se 𝐴 ) → Pred ( t++ ( 𝑅 ↾ 𝐴 ) , 𝐴 , 𝑧 ) ∈ V ) | |
| 18 | 17 | ancoms | ⊢ ( ( t++ ( 𝑅 ↾ 𝐴 ) Se 𝐴 ∧ 𝑧 ∈ 𝐴 ) → Pred ( t++ ( 𝑅 ↾ 𝐴 ) , 𝐴 , 𝑧 ) ∈ V ) |
| 19 | 16 18 | sylan | ⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑧 ∈ 𝐴 ) → Pred ( t++ ( 𝑅 ↾ 𝐴 ) , 𝐴 , 𝑧 ) ∈ V ) |
| 20 | 19 | adantll | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → Pred ( t++ ( 𝑅 ↾ 𝐴 ) , 𝐴 , 𝑧 ) ∈ V ) |
| 21 | predss | ⊢ Pred ( t++ ( 𝑅 ↾ 𝐴 ) , 𝐴 , 𝑧 ) ⊆ 𝐴 | |
| 22 | 21 | a1i | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → Pred ( t++ ( 𝑅 ↾ 𝐴 ) , 𝐴 , 𝑧 ) ⊆ 𝐴 ) |
| 23 | difss | ⊢ ( 𝐴 ∖ dom 𝐹 ) ⊆ 𝐴 | |
| 24 | frmin | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ( 𝐴 ∖ dom 𝐹 ) ⊆ 𝐴 ∧ ( 𝐴 ∖ dom 𝐹 ) ≠ ∅ ) ) → ∃ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) | |
| 25 | 23 24 | mpanr1 | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐴 ∖ dom 𝐹 ) ≠ ∅ ) → ∃ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) |
| 26 | 3 1 4 6 7 14 15 20 22 25 | frrlem14 | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → dom 𝐹 = 𝐴 ) |
| 27 | df-fn | ⊢ ( 𝐹 Fn 𝐴 ↔ ( Fun 𝐹 ∧ dom 𝐹 = 𝐴 ) ) | |
| 28 | 5 26 27 | sylanbrc | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝐹 Fn 𝐴 ) |